ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing local relaxation of cold atoms in optical superlattices

124   0   0.0 ( 0 )
 نشر من قبل Jens Eisert
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the study of relaxation processes in coherent non-equilibrium dynamics of quenched quantum systems, ultracold atoms in optical superlattices with periodicity two provide a very fruitful test ground. In this work, we consider the dynamics of a particular, experimentally accessible initial state prepared in a superlattice structure evolving under a Bose-Hubbard Hamiltonian in the entire range of interaction strengths, further investigating the issues raised in Ref. [Phys. Rev. Lett. 101, 063001 (2008)]. We investigate the relaxation dynamics analytically in the non interacting and hard core bosonic limits, deriving explicit expressions for the dynamics of certain correlation functions, and numerically for finite interaction strengths using the time-dependent density-matrix renormalization (t-DMRG) approach. We can identify signatures of local relaxation that can be accessed experimentally with present technology. While the global system preserves the information about the initial condition, locally the system relaxes to the state having maximum entropy respecting the constraints of the initial condition. For finite interaction strengths and finite times, the relaxation dynamics contains signatures of the relaxation dynamics of both the non-interacting and hard core bosonic limits.



قيم البحث

اقرأ أيضاً

We establish a setting - atoms in optical superlattices with period 2 - in which one can experimentally probe signatures of the process of local relaxation and apparent thermalization in non-equilibrium dynamics without the need of addressing single sites. This opens up a way to explore the convergence of subsystems to maximum entropy states in quenched quantum many-body systems with present technology. Remarkably, the emergence of thermal states does not follow from a coupling to an environment, but is a result of the complex non-equilibrium dynamics in closed systems. We explore ways of measuring the relevant signatures of thermalization in this analogue quantum simulation of a relaxation process, exploiting the possibilities offered by optical superlattices.
Infinite densities can describe the long-time properties of systems when ergodicity is broken and the equilibrium Boltzmann-Gibbs distribution fails. We here perform semiclassical Monte Carlo simulations of cold atoms in dissipative optical lattices with realistic parameters. We show that the momentum infinite density, as well as its scale invariance, should be observable in shallow potentials. We further evaluate the momentum autocorrelation function in the stationary and aging regime.
183 - F. Renzoni 2011
Brownian motors, or ratchets, are devices which rectify Brownian motion, i.e. they can generate a current of particles out of unbiased fluctuations. The ratchet effect is a very general phenomenon which applies to a wide range of physical systems, an d indeed ratchets have been realized with a variety of solid state devices, with optical trap setups as well as with synthetic molecules and granular gases. The present article reviews recent experimental realizations of ac driven ratchets with cold atoms in driven optical lattices. This is quite an unusual system for a Brownian motor as there is no a real thermal bath, and both the periodic potential for the atoms and the fluctuations are determined by laser fields. Such a system allowed us to realize experimentally rocking and gating ratchets, and to precisely investigate the relationship between symmetry and transport in these ratchets, both for the case of periodic and quasiperiodic driving.
Mixtures of bosonic and fermionic atoms in optical lattices provide a promising arena to study strongly correlated systems. In experiments realizing such mixtures in the quantum degenerate regime the temperature is a key parameter. In this work, we i nvestigate the intrinsic heating and cooling effects due to an entropy-preserving raising of the optical lattice potential. We analyze this process, identify the generic behavior valid for a wide range of parameters, and discuss it quantitatively for the recent experiments with 87Rb and 40K atoms. In the absence of a lattice, we treat the bosons in the Hartree-Fock-Bogoliubov-Popov-approximation, including the fermions in a self-consistent mean field interaction. In the presence of the full three-dimensional lattice, we use a strong coupling expansion. As a result of the presence of the fermions, the temperature of the mixture after the lattice ramp-up is always higher than for the pure bosonic case. This sheds light onto a key point in the analysis of recent experiments.
Experiments with cold atoms trapped in optical lattices offer the potential to realize a variety of novel phases but suffer from severe spatial inhomogeneity that can obscure signatures of new phases of matter and phase boundaries. We use a high temp erature series expansion to show that compressibility in the core of a trapped Fermi-Hubbard system is related to measurements of changes in double occupancy. This core compressibility filters out edge effects, offering a direct probe of compressibility independent of inhomogeneity. A comparison with experiments is made.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا