ﻻ يوجد ملخص باللغة العربية
The effects of several nonlinear regularization techniques are discussed in the framework of 3D seismic tomography. Traditional, linear, $ell_2$ penalties are compared to so-called sparsity promoting $ell_1$ and $ell_0$ penalties, and a total variation penalty. Which of these algorithms is judged optimal depends on the specific requirements of the scientific experiment. If the correct reproduction of model amplitudes is important, classical damping towards a smooth model using an $ell_2$ norm works almost as well as minimizing the total variation but is much more efficient. If gradients (edges of anomalies) should be resolved with a minimum of distortion, we prefer $ell_1$ damping of Daubechies-4 wavelet coefficients. It has the additional advantage of yielding a noiseless reconstruction, contrary to simple $ell_2$ minimization (`Tikhonov regularization) which should be avoided. In some of our examples, the $ell_0$ method produced notable artifacts. In addition we show how nonlinear $ell_1$ methods for finding sparse models can be competitive in speed with the widely used $ell_2$ methods, certainly under noisy conditions, so that there is no need to shun $ell_1$ penalizations.
This paper introduces novel deep recurrent neural network architectures for Velocity Model Building (VMB), which is beyond what Araya-Polo et al 2018 pioneered with the Machine Learning-based seismic tomography built with convolutional non-recurrent
A qualitative comparison of total variation like penalties (total variation, Huber variant of total variation, total generalized variation, ...) is made in the context of global seismic tomography. Both penalized and constrained formulations of seism
We present an algorithm for focusing inversion of electrical resistivity tomography (ERT) data. ERT is a typical example of ill-posed problem. Regularization is the most common way to face this kind of problems; it basically consists in using a prior
Incorporating prior knowledge on model unknowns of interest is essential when dealing with ill-posed inverse problems due to the nonuniqueness of the solution and data noise. Unfortunately, it is not trivial to fully describe our priors in a convenie
Using the standard ETAS model of triggered seismicity, we present a rigorous theoretical analysis of the main statistical properties of temporal clusters, defined as the group of events triggered by a given main shock of fixed magnitude m that occurr