ترغب بنشر مسار تعليمي؟ اضغط هنا

Unconventional superconductivity of NdFeAsO0.82F0.18 indicated by the low temperature dependence of the lower critical field Hc1

273   0   0.0 ( 0 )
 نشر من قبل Xiaolin Wang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measured the initial M-H curves for a sample of the newly discovered superconductor NdFeAsO0.82Fe0.18, which had a critical temperature, Tc, of 51 K, and was fabricated at the high pressure of 6 GPa. The lower critical field, Hc1, was extracted from the deviation point of the Meissner linearity in the M-H curves, which show linear temperature dependence in the low temperature region down to 5 K. The Hc1(T) indicates no s-wave superconductivity, but rather an unconventional superconductivity with a nodal gap structure. Furthermore, the linearity of Hc1 at low temperature does not hold at high temperature, but shows other characteristics, indicating that this superconductor might have multi-gap features. Based on the low temperature nodal gap structure, we estimate that the maximum gap magnitude delta 0 = (1.6+- 0.2) kBTc.



قيم البحث

اقرأ أيضاً

99 - Teng Wang , Yonghui Ma , Wei Li 2019
Gap symmetry and structure are crucial issues in understanding the superconducting mechanism of unconventional superconductors. Here we report an in-depth investigation on the out-of-plane lower critical field $H_{c1}^{c}$ of fluorine-based 1111 syst em superconductor CaFe$_{0.88}$Co$_{0.12}$AsF with $T_c$ = 21 K. A pronounced two-gap feature is revealed by the kink in the temperature dependent $H_{c1}^c(T)$ curve. The magnitudes of the two gaps are determined to be $Delta_1$ = 0.86 meV and $Delta_2$ = 4.48 meV, which account for 74% and 26% of the total superfluid density respectively. Our results suggest that the local antiferromagnetic exchange pairing picture is favored compared to the Fermi surface nesting scenario.
We present the first experimental results of the lower critical field $H_{c1}$ of the newly discovered F-doped superconductor LaO$_{0.9}$F$_{0.1}$FeAs (F-LaOFeAs) by global and local magnetization measurements. It is found that $H_{c1}$ showed an cle ar linear-$T$ dependence down to a temperature of 2 K, indicative of an unconventional pairing symmetry with a nodal gap function. Based on the d-wave model, we estimated a maximum gap value $Delta_0=4.0 pm 0.6$ meV, in consistent with the recent specific heat and point-contact tunneling measurements. Taking the demagnetization factor into account, the absolute value of $H_{c1}(0)$ is determined to be about 54 Oe, manifesting a low superfluid density for LaO$_{0.9}$F$_{0.1}$FeAs.
To investigate a mysterious superconducting state of URu_2Si_2 embedded in the so-called hidden order state, the lower critical field H_{c1} is precisely determined down to 55 mK for H || a and H || c. For this purpose, the positional dependence of t he local magnetic induction is measured on ultraclean single crystals (T_c = 1.4 K) with residual resistivity ratio exceeding 700. We find that the temperature dependence of H_{c1} significantly differs from that of any other superconductors. The whole H_{c1}(T) for H || a are well explained by the two superconducting gap structures with line and point nodes, which have been suggested by the recent thermal conductivity and specific heat measurements. On the other hand, for H || c, a change of slope with a distinct kink in H_{c1}(T), which cannot be accounted for by two gaps, is observed. This behavior for H || c sharply contrasts with the cusp behavior of H_{c1}(T) associated with a transition into another superconducting phase found in UPt_3 and U_{1-x}Th_xBe_{13}. The observed anomalous low-field diamagnetic response is possibly related to a peculiar vortex dynamics associated with chiral domains due to the multicomponent superconducting order parameter with broken time reversal symmetry.
102 - V. Hutanu , H. Deng , S. Ran 2019
The crystal structure of the new superconductor UTe2 has been investigated for the first time at low temperature (LT) of 2.7 K, just closely above the superconducting transition temperature of about 1.7 K by single crystal neutron diffraction, in ord er to prove, whether the orthorhombic structure of type Immm (Nr. 71 Int. Tabl.) reported for room temperature (RT) persists down to the superconducting phase and can be considered as a parent symmetry for the development of spin triplet superconductivity. Our results show that the RT structure reported previously obtained by single crystal X-Ray diffraction indeed describes also the LT neutron diffraction data with high precision. No structural change from RT down to 2.7 K is observed. Detailed structural parameters for UTe2 at LT are reported.
Key properties of the cuprates, such as the pseudogap observed above the critical temperature $T_c$, remain highly debated. Given their importance, we recently proposed a novel mechanism based on the Bose-like condensation of mutually interacting Coo per pairs [W. Sacks, A. Mauger, Y. Noat, Superconduct. Sci. Technol. 28 105014, (2015)]. In this work, we calculate the temperature dependent DOS using this model for different doping levels from underdoped to overdoped. In all situations, due to the presence of excited pairs, a pseudogap is found above $T_c$ while the normal DOS is recovered at $T^*$, the pair formation temperature. A similar behavior is found as a function of magnetic field, crossing a vortex, where a pseudogap exists in the vortex core. We show that the precise DOS shape depends on combined pair (boson) and quasiparticle (fermion) excitations, allowing for a deeper understanding of the SC to the PG transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا