ﻻ يوجد ملخص باللغة العربية
This paper addresses the existence and regularity of weak solutions for a fully parabolic model of chemotaxis, with prevention of overcrowding, that degenerates in a two-sided fashion, including an extra nonlinearity represented by a $p$-Laplacian diffusion term. To prove the existence of weak solutions, a Schauder fixed-point argument is applied to a regularized problem and the compactness method is used to pass to the limit. The local Holder regularity of weak solutions is established using the method of intrinsic scaling. The results are a contribution to showing, qualitatively, to what extent the properties of the classical Keller-Segel chemotaxis models are preserved in a more general setting. Some numerical examples illustrate the model.
We investigate the propagating profiles of a degenerate chemotaxis model describing the bacteria chemotaxis and consumption of oxygen by aerobic bacteria, in particular, the effect of the initial attractant distribution on bacterial clustering. We pr
In this paper we discuss a family of viscous Cahn-Hilliard equations with a non-smooth viscosity term. This system may be viewed as an approximation of a forward-backward parabolic equation. The resulting problem is highly nonlinear, coupling in the
We study a family of reaction-diffusion equations that present a doubly nonlinear character given by a combination of the $p$-Laplacian and the porous medium operators. We consider the so-called slow diffusion regime, corresponding to a degenerate be
In this paper, we study the consumption-chemotaxis-Stokes model with porous medium slow diffusion in a three dimensional bounded domain with zero-flux boundary conditions and no-slip boundary condition. In recent ten years, many efforts have been mad
In this paper, we study the time periodic problem to a three-dimensional chemotaxis-Stokes model with porous medium diffusion $Delta n^m$ and inhomogeneous mixed boundary conditions. By using a double-level approximation method and some iterative tec