ﻻ يوجد ملخص باللغة العربية
We consider some aspects of spontaneous breaking of Lorentz Invariance in field theories, discussing the possibility that the certain tensor operators may condensate in the ground state in which case the tensor Goldstone particles would appear. We analyze their dynamics and discuss to which extent such a theory could imitate the gravity. We are also interested if the universality of coupling of such `gravitons with other particles can be achieved in the infrared limit. Then we address the more complicated models when such tensor Goldstones coexist with the usual geometrical gravitons. At the end we examine the properties of possible cosmological scenarios in the case of goldstone gravity coexisting with geometrical gravity.
Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of inertial spontaneous symmetry breaking that does not involve a potential. This is dictated by the structure of the Weyl cur
Generally speaking, the existence of a superluminal neutrino can be attributed either to re-entrant Lorentz violation at ultralow energy from intrinsic Lorentz violation at ultrahigh energy or to spontaneous breaking of fundamental Lorentz invariance
We study a theory where the presence of an extra spin-two field coupled to gravity gives rise to a phase with spontaneously broken Lorentz symmetry. In this phase gravity is massive, and the Weak Equivalence Principle is respected. The newtonian pote
In this paper, we investigate a novel implication of the non-negligible spacetime curvature at large distances when its effects are expressed in terms of a suitably modified form of the Heisenberg uncertainty relations. Specifically, we establish a o
In this work, we compute some phenomenological bounds for the electromagnetic and massive gravitational high-derivative extensions supposing that it is possible to have an astrophysical process that generates simultaneously gravitational and electrom