ترغب بنشر مسار تعليمي؟ اضغط هنا

Photo-induced separation of chiral isomers in a classical buffer gas

555   0   0.0 ( 0 )
 نشر من قبل Anton Andreev
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a theory of photo-induced drift of chiral molecules or small particles in classical buffer gases. In the absence of a magnetic field there exists a flux of chiral molecules, provided the electromagnetic field is circularly polarized. It has opposite signs for different chiral isomers. In the presence of a magnetic field the flux can be also induced by a linearly polarized (or unpolarized) electromagnetic field. The magnitude of the flux is not proportional to either linear or orbital momentum of the electromagnetic field.

قيم البحث

اقرأ أيضاً

Using dissipative particle dynamics (DPD) simulation method, we study the phase separation dynamics in block copolymer (BCP) melt in $d=3$, subjected to external stimuli such as light. An initial homogeneous BCP melt is rapidly quenched to a temperat ure $T < T_c$, where $T_c$ is the critical temperature. We then let the system go through alternate light on and off cycles. An on-cycle breaks the stimuli-sensitive bonds connecting both the blocks A and B in BCP melt, and during the off-cycle, broken bonds reconnect. By simulating the effect of light, we isolate scenarios where phase separation begins with the light off (set 1); the cooperative interactions within the system allow it to undergo microphase separation. When the phase separation starts with the light on (set 2), the system undergoes macrophase separation due to the bond breaking. Here, we report the role of alternate cycles on domain morphology by varying bond-breaking probability for both the sets 1 and 2, respectively. We observe that the scaling functions depend upon the conditions mentioned above that change the time scale of the evolving morphologies in various cycles. However, in all the cases, the average domain size respects the power-law growth: $R(t)sim t^{phi}$ at late times, here $phi$ is the dynamic growth exponent. After a short-lived diffusive growth ($phi sim 1/3$) at early times, $phi$ illustrates a crossover from the viscous hydrodynamic ($phi sim 1$) to the inertial hydrodynamic ($phi sim 2/3$) regimes at late times.
207 - Zhan Ma , Ran Ni 2021
Using computer simulations and dynamic mean-field theory, we demonstrate that fast enough rotation of circle active Brownian particles in two dimensions generates a dynamical clustering state interrupting the conventional motility induced phase separ ation (MIPS). Multiple clusters arise from the combination of the conventional MIPS cohesion, and the circulating current caused disintegration. The non-vanishing current in non-equilibrium steady states microscopically originates from the motility ``relieved by automatic rotation, which breaks the detailed balance at the continuum level. This mechanism sheds light on the understanding of dynamic clusters formation observed in a variety of active matter systems, and may help examine the generalization of effective thermodynamic concepts developed in the context of MIPS.
Nonequilibrium processes occurring in functional materials can significantly impact device efficiencies and are often difficult to characterize due to the broad range of length and time scales involved. In particular, mixed halide hybrid perovskites are promising for optoelectronics, yet the halides reversibly phase separate when photo-excited, significantly altering device performance. By combining nanoscale imaging and multiscale modeling, we elucidate the mechanism underlying this phenomenon, demonstrating that local strain induced by photo-generated polarons promotes halide phase separation and leads to nucleation of light-stabilized iodide-rich clusters. This effect relies on the unique electromechanical properties of hybrid materials, characteristic of neither their organic nor inorganic constituents alone. Exploiting photo-induced phase separation and other nonequilibrium phenomena in hybrid materials, generally, could enable new opportunities for expanding the functional applications in sensing, photoswitching, optical memory, and energy storage.
Photo-induced edge states in low dimensional materials have attracted considerable attention due to the tunability of topological properties and dispersion. Specifically, graphene nanoribbons have been predicted to host chiral edge modes upon irradia tion with circularly polarized light. Here, we present numerical calculations of time-resolved angle resolved photoemission spectroscopy (trARPES) and time-resolved resonant inelastic x-ray scattering (trRIXS) of a graphene nanoribbon. We characterize pump-probe spectroscopic signatures of photo-induced edge states, illustrate the origin of distinct spectral features that arise from Floquet topological edge modes, and investigate the roles of incoming photon energies and finite core-hole lifetime in RIXS. With momentum, energy, and time resolution, pump-probe spectroscopies can play an important role in understanding the behavior of photo-induced topological states of matter.
Dissipative and unitary processes define the evolution of a many-body system. Their interplay gives rise to dynamical phase transitions and can lead to instabilities. We discovered a non-stationary state of chiral nature in a synthetic many-body syst em with independently controllable unitary and dissipative couplings. Our experiment is based on a spinor Bose gas interacting with an optical resonator. Orthogonal quadratures of the resonator field coherently couple the Bose-Einstein condensate to two different atomic spatial modes whereas the dispersive effect of the resonator losses mediates a dissipative coupling between these modes. In a regime of dominant dissipative coupling we observe the chiral evolution and map it to a positional instability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا