ترغب بنشر مسار تعليمي؟ اضغط هنا

Hecke-Clifford algebras and spin Hecke algebras III: the trigonometric type

197   0   0.0 ( 0 )
 نشر من قبل Ta Khongsap
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Ta Khongsap




اسأل ChatGPT حول البحث

The notion of trigonometric spin double affine Hecke algebras (tsDaHa) and trigonometric double affine Hecke-Clifford algebras (tDaHCa) associated to classical Weyl groups are introduced. The PBW basis property is established. An algebra isomorphism relating tDaHCa to tsDaHa is obtained.



قيم البحث

اقرأ أيضاً

151 - Ta Khongsap , Weiqiang Wang 2007
Associated to the classical Weyl groups, we introduce the notion of degenerate spin affine Hecke algebras and affine Hecke-Clifford algebras. For these algebras, we establish the PBW properties, formulate the intertwiners, and describe the centers. W e further develop connections of these algebras with the usual degenerate (i.e. graded) affine Hecke algebras of Lusztig by introducing a notion of degenerate covering affine Hecke algebras.
151 - Ta Khongsap , Weiqiang Wang 2009
We introduce an odd double affine Hecke algebra (DaHa) generated by a classical Weyl group W and two skew-polynomial subalgebras of anticommuting generators. This algebra is shown to be Morita equivalent to another new DaHa which are generated by W a nd two polynomial-Clifford subalgebras. There is yet a third algebra containing a spin Weyl group algebra which is Morita (super)equivalent to the above two algebras. We establish the PBW properties and construct Verma-type representations via Dunkl operators for these algebras.
165 - Ta Khongsap , Weiqiang Wang 2008
The notion of rational spin double affine Hecke algebras (sDaHa) and rational double affine Hecke-Clifford algebras (DaHCa) associated to classical Weyl groups are introduced. The basic properties of these algebras such as the PBW basis and Dunkl ope rator representations are established. An algebra isomorphism relating the rational DaHCa to the rational sDaHa is obtained. We further develop a link between the usual rational Cherednik algebra and the rational sDaHa by introducing a notion of rational covering double affine Hecke algebras.
Let $W$ be a Coxeter group. The goal of the paper is to construct new Hopf algebras that contain Hecke algebras $H_{bf q}(W)$ as (left) coideal subalgebras. Our Hecke-Hopf algebras ${bf H}(W)$ have a number of applications. In particular they provide new solutions of quantum Yang-Baxter equation and lead to a construction of a new family of endo-functors of the category of $H_{bf q}(W)$-modules. Hecke-Hopf algebras for the symmetric group are related to Fomin-Kirillov algebras, for an arbitrary Coxeter group $W$ the Demazure part of ${bf H}(W)$ is being acted upon by generalized braided derivatives which generate the corresponding (generalized) Nichols algebra.
In this paper, we compute the center of the infinitesimal Hecke algebras Hz associated to sl_2 ; then using nontriviality of the center, we study representations of these algebras in the framework of the BGG category O. We also discuss central elemen ts in infinitesimal Hecke algebras over gl(n) and sp(2n) for all n. We end by proving an analogue of the theorem of Duflo for Hz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا