ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Mass and Metal-Poor Gamma-Ray Burst Host Galaxies

160   0   0.0 ( 0 )
 نشر من قبل Sandra Savaglio
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sandra Savaglio




اسأل ChatGPT حول البحث

Gamma-ray bursts (GRBs) are cosmologically distributed, very energetic and very transient sources detected in the gamma-ray domain. The identification of their x-ray and optical afterglows allowed so far the redshift measurement of 150 events, from z = 0.01 to z = 6.29. For about half of them, we have some knowledge of the properties of the parent galaxy. At high redshift (z > 2), absorption lines in the afterglow spectra give information on the cold interstellar medium in the host. At low redshift (z < 1.0) multi-band optical-NIR photometry and integrated spectroscopy reveal the GRB host general properties. A redshift evolution of metallicity is not noticeable in the whole sample. The typical value is a few times lower than solar. The mean host stellar mass is similar to that of the Large Magellanic Cloud, but the mean star formation rate is five times higher. GRBs are discovered with gamma-ray, not optical or NIR, instruments. Their hosts do not suffer from the same selection biases of typical galaxy surveys. Therefore, they might represent a fair sample of the most common galaxies that existed in the past history of the universe, and can be used to better understand galaxy formation and evolution.



قيم البحث

اقرأ أيضاً

214 - Sandra Savaglio 2012
The galaxies hosting the most energetic explosions in the universe, the gamma-ray bursts (GRBs), are generally found to be low-mass, metal poor, blue and star forming galaxies. However, the majority of the targets investigated so far (less than 100) are at relatively low redshift, z < 2. We know that at low redshift, the cosmic star formation is predominantly in small galaxies. Therefore, at low redshift, long-duration GRBs, which are associated with massive stars, are expected to be in small galaxies. Preliminary investigations of the stellar mass function of z < 1.5 GRB hosts does not indicate that these galaxies are different from the general population of nearby star-forming galaxies. At high-z, it is still unclear whether GRB hosts are different. Recent results indicate that a fraction of them might be associated with dusty regions in massive galaxies. Remarkable is the a super-solar metallicity measured in the interstellar medium of a z = 3.57 GRB host.
244 - P. Schady , M.J. Page , S.R. Oates 2009
In this paper we present the results from the analysis of a sample of 28 gamma-ray burst (GRB) afterglow spectral energy distributions, spanning the X-ray through to near-infrared wavelengths. This is the largest sample of GRB afterglow spectral ener gy distributions thus far studied, providing a strong handle on the optical depth distribution of soft X-ray absorption and dust-extinction systems in GRB host galaxies. We detect an absorption system within the GRB host galaxy in 79% of the sample, and an extinction system in 71% of the sample, and find the Small Magellanic Cloud (SMC) extinction law to provide an acceptable fit to the host galaxy extinction profile for the majority of cases, consistent with previous findings. The range in the soft X-ray absorption to dust-extinction ratio, N_{H,X}/Av, in GRB host galaxies spans almost two orders of magnitude, and the typical ratios are significantly larger than those of the Magellanic Clouds or Milky Way. Although dust destruction could be a cause, at least in part, for the large N_{H,X}/Av ratios, the good fit provided by the SMC extinction law for the majority of our sample suggests that there is an abundance of small dust grains in the GRB environment, which we would expect to have been destroyed if dust destruction were responsible for the large N_{H,X}/Av ratios. Instead, our analysis suggests that the distribution of N_{H,X}/Av in GRB host galaxies may be mostly intrinsic to these galaxies, and this is further substantiated by evidence for a strong negative correlation between N_{H,X}/Av and metallicity for a subsample of GRB hosts with known metallicity. Furthermore, we find the N_{H,X}/Av ratio and metallicity for this subsample of GRBs to be comparable to the relation found in other more metal-rich galaxies.
60 - R.S. Priddey 2006
We present millimetre (mm) and submillimetre (submm) photometry of a sample of host galaxies of Gamma Ray Bursts (GRBs), obtained using the MAMBO2 and SCUBA bolometer arrays respectively. These observations were obtained as part of an ongoing project to investigate the status of GRBs as indicators of star formation. Our targets include two of the most unusual GRB host galaxies, selected as likely candidate submm galaxies: the extremely red (R-K approx 5) host of GRB 030115, and the extremely faint (R>29.5) host of GRB 020124. Neither of these galaxies is detected, but the deep upper limits for GRB 030115 impose constraints on its spectral energy distribution. As a framework for interpreting these data, and for predicting the results of forthcoming submm surveys of Swift-derived host samples, we model the expected flux and redshift distributions based on luminosity functions of both submm galaxies and GRBs, assuming a direct proportionality between the GRB rate density and the global star formation rate density. We derive the effects of possible sources of uncertainty in these assumptions, including an anticorrelation between GRB rate and the global average metallicity.
143 - S. Savaglio 2012
Due to their extreme luminosities, gamma-ray bursts (GRBs) can be detected in hostile regions of galaxies, nearby and at very high redshift, making them important cosmological probes. The investigation of galaxies hosting long-duration GRBs (whose pr ogenitor is a massive star) demonstrated their connection to star formation. Still, the link to the total galaxy population is controversial, mainly because of the small-number statistics: ~ 1,100 are the GRBs detected so far, ~ 280 those with measured redshift, and ~ 70 the hosts studied in detail. These are typically low-redshift (z < 1.5), low luminosity, metal poor, and star-forming galaxes. On the other hand, at 1.5< z <4, massive, metal rich and dusty, interacting galaxies are not uncommon. The most distant population (z > 4) is poorly explored, but the deep limits reached point towards very small and star-forming objects, similar to the low-z population. This `back to the future behavior is a natural consequence of the connection of long GRBs to star formation in young regions of the universe.
GRB-selected galaxies are broadly known to be faint, blue, young, star-forming dwarf galaxies. This insight, however, is based in part on heterogeneous samples of optically selected, lower-redshift galaxies. To study the statistical properties of GRB -selected galaxies we here introduce The Optically Unbiased GRB Host (TOUGH) complete sample of 69 X-ray selected Swift GRB host galaxies spanning the redshift range 0.03-6.30 and summarise the first results of a large observational survey of these galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا