ترغب بنشر مسار تعليمي؟ اضغط هنا

The mid-infrared colour-magnitude relation of early-type galaxies in the Coma cluster as measured by Spitzer-IRS

99   0   0.0 ( 0 )
 نشر من قبل Marcel Clemens
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use 16 micron, Spitzer-IRS, blue peakup photometry of 50 early-type galaxies in the Coma cluster to define the mid-infrared colour-magnitude relation. We compare with recent simple stellar population models that include the mid-infrared emission from the extended, dusty envelopes of evolved stars. The Ks-[16] colour in these models is very sensitive to the relative population of dusty Asymptotic Giant Branch (AGB) stars. We find that the passively evolving early-type galaxies define a sequence of approximately constant age (~10 Gyr) with varying metallicity. Several galaxies that lie on the optical/near-infrared colour-magnitude relation do not lie on the mid-infrared relation. This illustrates the sensitivity of the Ks-[16] colour to age. The fact that a colour-magnitude relation is seen in the mid-infrared underlines the extremely passive nature of the majority (68%) of early-type galaxies in the Coma cluster. The corollary of this is that 32% of the early-type galaxies in our sample are not `passive, insofar as they are either significantly younger than 10 Gyr or they have had some rejuvenation episode within the last few Gyr.



قيم البحث

اقرأ أيضاً

In this work, we study the evolution with redshift of the colour-magnitude relation (CMR) of early-type galaxies. This evolution is analyzed through cosmological numerical simulations from z = 2 to z = 0. The preliminary results shown here represent the starting point of a study aimed at identifying the processes that originated the observed CMR of early-type galaxies at z = 0.
We use textit{GALEX} (Galaxy Evolution Explorer) near-UV (NUV) photometry of a sample of early-type galaxies selected in textit{SDSS} (Sloan Digital Sky Survey) to study the UV color-magnitude relation (CMR). $NUV-r$ color is an excellent tracer of e ven small amounts ($sim 1$% mass fraction) of recent ($la 1$ Gyr) star formation and so the $NUV-r$ CMR allows us to study the effect of environment on the recent star formation history. We analyze a volume-limited sample of 839 visually-inspected early-type galaxies in the redshift range $0.05 < z < 0.10$ brighter than $M_{r}$ of -21.5 with any possible emission-line or radio-selected AGN removed to avoid contamination. We find that contamination by AGN candidates and late-type interlopers highly bias any study of recent star formation in early-type galaxies and that, after removing those, our lower limit to the fraction of massive early-type galaxies showing signs of recent star formation is roughly $30 pm 3%$ This suggests that residual star formation is common even amongst the present day early-type galaxy population. We find that the fraction of UV-bright early-type galaxies is 25% higher in low-density environments. However, the density effect is clear only in the lowest density bin. The blue galaxy fraction for the subsample of the brightest early-type galaxies however shows a very strong density dependence, in the sense that the blue galaxy fraction is lower in a higher density region.
We investigate the development of the red sequence (RS) of cluster galaxies by using a semi-analytic model of galaxy formation. Results show good agreement between the general trend of the simulated RS and the observed relation in early-type galaxies . However, the most luminous galaxies ($M_V lesssim -20$) depart from the linear fit to observed data, displaying almost constant colours. We analyze the dependence with redshift of the fraction of stellar mass contributed to each galaxy by different processes (i.e., quiescent star formation, disc instability and mergers), finding that the evolution of the bright end, since $zapprox 2$, is mainly driven by minor and major dry mergers. Since the most luminous galaxies have a narrow spread in ages ($1.0times 10^{10}$ yr $<t<1.2times 10^{10}$ yr), their metallicities are the main factor that affects their colours. Galaxies in the bright end reach an upper limit in metallicity as a result of the competition of the mass of stars and metals provided by the star formation within the galaxies and by the accretion of merging satellites. Star formation activity in massive galaxies (M_star gtrsim 10^{10} M_{odot}$) contribute with stellar components of high metallicity, but this fraction of stellar mass is negligible. Mergers contribute with a larger fraction of stellar mass ($approx 10-20$ per cent), but the metallicity of the accreted satellites is lower by $approx 0.2$ dex than the mean metallicity of galaxies they merge with. The effect of dry mergers is to increase the mass of galaxies in the bright end, without significantly altering their metallicities, and hence,their colours, giving rise to the break in the RS. These results are found for clusters with different virial masses, supporting the idea of the universality of the CMR in agreement with observational results.
In this letter we present a study of the color magnitude relation of 468 early-type galaxies in the Virgo Cluster with Sloan Digital Sky Survey imaging data. The analysis of our homogeneous, model-independent data set reveals that, in all colors (u-g , g-r, g-i, i-z) similarly, giant and dwarf early-type galaxies follow a continuous color magnitude relation (CMR) that is best described by an S-shape. The magnitude range and quality of our data allows us to clearly confirm that the CMR in Virgo is not linear. Additionally, we analyze the scatter about the CMR and find that it increases in the intermediate-luminosity regime. Nevertheless, despite this observational distinction, we conclude from the similarly shaped CMR of semi-analytic model predictions that dwarfs and giants could be of the same origin.
58 - Omar Lopez-Cruz 2004
We present the analysis of the color-magnitude relation (CMR) for a sample of 57 X-ray detected Abell clusters within the redshift interval 0.02 <= z <= 0.18. We use the B-R vs R color-magnitude plane to establish that the CMR is present in all our l ow-redshift clusters and can be parameterized by a single straight line.We find that the CMRs for this large cluster sample of different richness and cluster types are consistent with having universal properties. The k-corrected color of the individual CMRs in the sample at a fixed absolute magnitude have a small intrinsic dispersion of ~0.05 mag. The slope of the CMR is consistent with being the same for all clusters, with the variations entirely accountable by filter band shifting effects. We determine the mean of the dispersion of the 57 CMRs to be 0.074 mag, with a small rms scatter of 0.026 mag. However, a modest amount of the dispersion arises from photometric measurement errors and possible background cluster superpositions; and the derived mean dispersion is an upper limit. Models which explain the CMR in terms of metallicity and passive evolution can naturally reproduce the observed behavior of the CMR in this paper. The observed properties of the CMR are consistent with models in which the last episode of significant star formation in cluster early-type galaxies occurred significantly more than ~3 Gyr ago, and that the core set of early-type galaxies in clusters were formed more than 7 Gyr ago. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا