ﻻ يوجد ملخص باللغة العربية
Given a finite subset S in F_p^d, let a(S) be the number of distinct r-tuples (x_1,...,x_r) in S such that x_1+...+x_r = 0. We consider the moments F(m,n) = sum_|S|=n a(S)^m. Specifically, we present an explicit formula for F(m,n) as a product of two matrices, ultimately yielding a polynomial in q=p^d. The first matrix is independent of n while the second makes no mention of finite fields. However, the complexity of calculating each grows with m. The main tools here are the Schur-Weyl duality theorem, and some elementary properties of symmetric functions. This problem is closely to the study of maximal caps.
We establish an isomorphism between the center of the Heisenberg category defined by Khovanov and the algebra $Lambda^*$ of shifted symmetric functions defined by Okounkov-Olshanski. We give a graphical description of the shifted power and Schur base
We determine the multiplicities of irreducible summands in the symmetric and the exterior squares of hook representations of symmetric groups over an algebraically closed field of characteristic zero.
We give a simple crystal theoretic interpretation of the Lascouxs expansion of a non-symmetric Cauchy kernel $prod_{i+ jleq n+1}(1-x_iy_j)^{-1}$, which is given in terms of Demazure characters and atoms. We give a bijective proof of the non-symmetric
We give a recursive method for computing all values of a basis of Whittaker functions for unramified principal series invariant under an Iwahori or parahoric subgroup of a split reductive group $G$ over a nonarchimedean local field $F$. Structures in
Let $p$ be any prime. Let $P_n$ be a Sylow $p$-subgroup of the symmetric group $S_n$. Let $phi$ and $psi$ be linear characters of $P_n$ and let $N$ be the normaliser of $P_n$ in $S_n$. In this article we show that the inductions of $phi$ and $psi$ to