ﻻ يوجد ملخص باللغة العربية
We propose a perturbation method for determining the (largest) group of invariance of a toric ideal defined in Aoki and Takemura [2008a]. In the perturbation method, we investigate how a generic element in the row space of the configuration defining a toric ideal is mapped by a permutation of the indeterminates. Compared to the proof in Aoki and Takemura [2008a] which was based on stabilizers of a subset of indeterminates, the perturbation method gives a much simpler proof of the group of invariance. In particular, we determine the group of invariance for a general hierarchical model of contingency tables in statistics, under the assumption that the numbers of the levels of the factors are generic. We prove that it is a wreath product indexed by a poset related to the intersection poset of the maximal interaction effects of the model.
We consider the inference problem for parameters in stochastic differential equation models from discrete time observations (e.g. experimental or simulation data). Specifically, we study the case where one does not have access to observations of the
Let $X$ and $Y$ be nonsingular projective varieties over an algebraically closed field $k$ of positive characteristic. If $X$ and $Y$ are birational, we show their $S$-fundamental group schemes are isomorphic.
Least Absolute Shrinkage and Selection Operator or the Lasso, introduced by Tibshirani (1996), is a popular estimation procedure in multiple linear regression when underlying design has a sparse structure, because of its property that it sets some re
Based on deleting-item central limit theory, the classical Donskers theorem of partial-sum process of independent and identically distributed (i.i.d.) random variables is extended to incomplete partial-sum process. The incomplete partial-sum process
Cooks distance [Technometrics 19 (1977) 15-18] is one of the most important diagnostic tools for detecting influential individual or subsets of observations in linear regression for cross-sectional data. However, for many complex data structures (e.g