ﻻ يوجد ملخص باللغة العربية
The phase diagram in temperature and magnetic field of the metal-organic, two-leg, spin-ladder compound (C5H12N)2CuBr4 is studied by measurements of the specific heat and the magnetocaloric effect. We demonstrate the presence of an extended spin Luttinger-liquid phase between two field-induced quantum critical points and over a broad range of temperature. Based on an ideal spin-ladder Hamiltonian, comprehensive numerical modelling of the ladder specific heat yields excellent quantitative agreement with the experimental data across the complete phase diagram.
We present NMR measurements of a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder compound (C7H10N)2CuBr4 under magnetic fields up to 15 T in the temperature range from 1.2 K down to 50 mK. From the splitting of NMR lines we determine the phas
Magnetic excitations in the strong-leg quantum spin ladder compound (C$_7$H$_{10}$N)$_2$CuBr$_4$ (known as DIMPY) in the field-induced Tomonaga-Luttinger spin liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy.
Bethe ansatz and bosonization procedures are used to describe the thermodynamics of the strong-coupled Hubbard chain in the textit{spin-incoherent} Luttinger liquid (LL) regime: $J(equiv 4t^2/U)ll k_B Tll E_F$, where $t$ is the hopping amplitude, $U(
In this work we derive a new scheme to calculate Tomonaga-Luttinger liquid (TLL) parameters and holon (charge modes) velocities in a quasi-1D material that consists of two-leg ladders coupled through Coulomb interactions. Firstly, we obtain an analyt
In a one-dimensional (1D) system of interacting electrons, excitations of spin and charge travel at different speeds, according to the theory of a Tomonaga-Luttinger Liquid (TLL) at low energies. However, the clear observation of this spin-charge sep