ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy density profiles and shapes -- II. selection biases in strong lensing surveys

46   0   0.0 ( 0 )
 نشر من قبل Glenn van de Ven
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[Abridged] Many current and future astronomical surveys will rely on samples of strong gravitational lens systems to draw conclusions about galaxy mass distributions. We use a new strong lensing pipeline (presented in Paper I of this series) to explore selection biases that may cause the population of strong lensing systems to differ from the general galaxy population. Our focus is on point-source lensing by early-type galaxies with two mass components (stellar and dark matter) that have a variety of density profiles and shapes motivated by observational and theoretical studies of galaxy properties. We seek not only to quantify but also to understand the physics behind selection biases related to: galaxy mass, orientation and shape; dark matter profile parameters such as inner slope and concentration; and adiabatic contraction. We study how all of these properties affect the lensing Einstein radius, total cross-section, quad/double ratio, and image separation distribution. We find significant (factors of several) selection biases with mass; orientation, for a given galaxy shape at fixed mass; cusped dark matter profile inner slope and concentration; concentration of the stellar and dark matter deprojected Sersic models. Interestingly, the intrinsic shape of a galaxy does not strongly influence its lensing cross-section when we average over viewing angles. Our results are an important first step towards understanding how strong lens systems relate to the general galaxy population.

قيم البحث

اقرأ أيضاً

Studies of strong gravitational lensing in current and upcoming wide and deep photometric surveys, and of stellar kinematics from (integral-field) spectroscopy at increasing redshifts, promise to provide valuable constraints on galaxy density profile s and shapes. However, both methods are affected by various selection and modelling biases, whch we aim to investigate in a consistent way. In this first paper in a series we develop a flexible but efficient pipeline to simulate lensing by realistic galaxy models. These galaxy models have separate stellar and dark matter components, each with a range of density profiles and shapes representative of early-type, central galaxies without significant contributions from other nearby galaxies. We use Fourier methods to calculate the lensing properties of galaxies with arbitrary surface density distributions, and Monte Carlo methods to compute lensing statistics such as point-source lensing cross-sections. Incorporating a variety of magnification bias modes lets us examine different survey limitations in image resolution and flux. We rigorously test the numerical methods for systematic errors and sensitivity to basic assumptions. We also determine the minimum number of viewing angles that must be sampled in order to recover accurate orientation-averaged lensing quantities. We find that for a range of non-isothermal stellar and dark matter density profiles typical of elliptical galaxies, the combined density profile and corresponding lensing properties are surprisingly close to isothermal around the Einstein radius. The converse implication is that constraints from strong lensing and/or stellar kinematics, which are indeed consistent with isothermal models near the Einstein radius, cannot trivially be extrapolated to smaller and larger radii.
Intrinsic galaxy alignments constitute the major astrophysical systematic of forthcoming weak gravitational lensing surveys but also yield unique insights into galaxy formation and evolution. We build analytic models for the distribution of galaxy sh apes based on halo properties extracted from the Millennium Simulation, differentiating between early- and late-type galaxies as well as central galaxies and satellites. The resulting ellipticity correlations are investigated for their physical properties and compared to a suite of current observations. The best-faring model is then used to predict the intrinsic alignment contamination of planned weak lensing surveys. We find that late-type galaxy models generally have weak intrinsic ellipticity correlations, marginally increasing towards smaller galaxy separation and higher redshift. The signal for early-type models at fixed halo mass strongly increases by three orders of magnitude over two decades in galaxy separation, and by one order of magnitude from z=0 to z=2. The intrinsic alignment strength also depends strongly on halo mass, but not on galaxy luminosity at fixed mass, or galaxy number density in the environment. We identify models that are in good agreement with all observational data, except that all models over-predict alignments of faint early-type galaxies. The best model yields an intrinsic alignment contamination of a Euclid-like survey between 0.5-10% at z>0.6 and on angular scales larger than a few arcminutes. Cutting 20% of red foreground galaxies using observer-frame colours can suppress this contamination by up to a factor of two.
275 - Da-Ming Chen 2005
We use the statistics of strong gravitational lenses to investigate whether mass profiles with a flat density core are supported. The probability for lensing by halos modeled by a nonsingular truncated isothermal sphere (NTIS) with image separations greater than a certain value (ranging from zero to ten arcseconds) is calculated. NTIS is an analytical model for the postcollapse equilibrium structure of virialized objects derived by Shapiro, Iliev & Raga. This profile has a soft core and matches quite well with the mass profiles of dark matter-dominated dwarf galaxies deduced from their observed rotation curves. It also agrees well with the NFW (Navarro-Frenk-White) profile at all radii outside of a few NTIS core radii. Unfortunately, comparing the results with those for singular lensing halos (NFW and SIS+NFW) and strong lensing observations, the probabilities for lensing by NTIS halos are far too low. As this result is valid for any other nonsingular density profiles (with a large core radius), we conclude that nonsingular density profiles (with a large core radius) for CDM halos are ruled out by statistics of strong gravitational lenses.
105 - C. Chang , E. Baxter , B. Jain 2017
Splashback refers to the process of matter that is accreting onto a dark matter halo reaching its first orbital apocenter and turning around in its orbit. The cluster-centric radius at which this process occurs, r_sp, defines a halo boundary that is connected to the dynamics of the cluster. A rapid decline in the halo profile is expected near r_sp. We measure the galaxy number density and weak lensing mass profiles around redMaPPer galaxy clusters in the first year Dark Energy Survey (DES) data. For a cluster sample with mean M_200m mass ~2.5 x 10^14 M_sun, we find strong evidence of a splashback-like steepening of the galaxy density profile and measure r_sp=1.13 +/- 0.07 Mpc/h, consistent with earlier SDSS measurements of More et al. (2016) and Baxter et al. (2017). Moreover, our weak lensing measurement demonstrates for the first time the existence of a splashback-like steepening of the matter profile of galaxy clusters. We measure r_sp=1.34 +/- 0.21 Mpc/h from the weak lensing data, in good agreement with our galaxy density measurements. For different cluster and galaxy samples, we find that consistent with LCDM simulations, r_sp scales with R_200m and does not evolve with redshift over the redshift range of 0.3--0.6. We also find that potential systematic effects associated with the redMaPPer algorithm may impact the location of r_sp. We discuss progress needed to understand the systematic uncertainties and fully exploit forthcoming data from DES and future surveys, emphasizing the importance of more realistic mock catalogs and independent cluster samples.
To measure the mass of foreground objects with weak gravitational lensing, one needs to estimate the redshift distribution of lensed background sources. This is commonly done in an empirical fashion, i.e. with a reference sample of galaxies of known spectroscopic redshift, matched to the source population. In this work, we develop a simple decision tree framework that, under the ideal conditions of a large, purely magnitude-limited reference sample, allows an unbiased recovery of the source redshift probability density function p(z), as a function of magnitude and color. We use this framework to quantify biases in empirically estimated p(z) caused by selection effects present in realistic reference and weak lensing source catalogs, namely (1) complex selection of reference objects by the targeting strategy and success rate of existing spectroscopic surveys and (2) selection of background sources by the success of object detection and shape measurement at low signal-to-noise. For intermediate-to-high redshift clusters, and for depths and filter combinations appropriate for ongoing lensing surveys, we find that (1) spectroscopic selection can cause biases above the 10 per cent level, which can be reduced to 5 per cent by optimal lensing weighting, while (2) selection effects in the shape catalog bias mass estimates at or below the 2 per cent level. This illustrates the importance of completeness of the reference catalogs for empirical redshift estimation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا