ﻻ يوجد ملخص باللغة العربية
We describe two different modes for electronically detecting an adsorbed molecule using a nanoscale transistor. The attachment of an ionic molecular target shifts the threshold voltage through modulation of the depletion layer electrostatics. A stronger bonding between the molecule and the channel, involving actual overlap of their quantum mechanical wavefunctions, leads to scattering by the molecular traps that creates characteristic fingerprints when scanned with a backgate. We describe a theoretical approach to model these transport characteristics.
Electric charge detection by atomic force microscopy (AFM) with single- electron resolution (e-EFM) is a promising way to investigate the electronic level structure of individual quantum dots (QD). The oscillating AFM tip modulates the energy of the
Scanning tunneling microscopy (STM) can be used to detect inelastic spin transitions in magnetic nano-structures comprising only a handful of atoms. Here we demonstrate that STM can uniquely identify the electrostatic spin crossover effect, whereby t
In this work we theoretically study properties of electric current driven by a temperature gradient through a quantum dot/molecule coupled to the source and drain charge reservoirs. We analyze the effect of Coulomb interactions between electrons on t
Electrostatic gating lies in the heart of modern FET-based integrated circuits. Usually, the gate electrode has to be placed very close to the conduction channel, typically a few nanometers, in order to achieve efficient tunability. However, remote c
Exciting phenomena may emerge in non-centrosymmetric two-dimensional (2D) electronic systems when spin-orbit coupling (SOC) interplays dynamically with Coulomb interactions, band topology, and external modulating forces, etc. Here, we report illumina