ترغب بنشر مسار تعليمي؟ اضغط هنا

Interferometric imaging of the high-redshift radio galaxy, 4C60.07: An SMA, Spitzer and VLA study reveals a binary AGN/starburst

49   0   0.0 ( 0 )
 نشر من قبل Rob Ivison
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-resolution submm imaging of the HzRG, 4C60.07, at z=3.8, has revealed two dusty components. Spitzer imaging shows that one of these components (B) is coincident with an extremely red AGN, offset by ~4 (~30 kpc) from the HzRG core. The other submm component (A) - resolved by our beam and devoid of emission at 3.6-8.0um - lies between B and the HzRG core. Since the HzRG was discovered via its young, steep-spectrum lobes and their creation was likely triggered by the interaction, we argue that we are witnessing an early-stage merger, prior to its eventual equilibrium state. The interaction is between the host galaxy of an actively-fueled BH, and a gas-rich starburst/AGN (B) marked by the compact submm component and coincident with broad CO emission. `A is a plume of cold, dusty gas, associated with a narrow (~150 km/s) CO feature, and may represent a short-lived tidal structure. It has been claimed that HzRGs and SMGs differ only in the activity of their AGNs, but such complex submm morphologies are seen only rarely amongst SMGs. Our study has important implications: where a galaxys gas is not aligned with its central BH, CO may be an unreliable probe of dynamical mass, affecting work on the co-assembly of BHs and spheroids. Our data support the picture wherein close binary AGN are induced by mergers. They also raise the possibility that some supposedly jet-induced starbursts may have formed co-evally with (yet independently of) the radio jets, both triggered by the same interaction. We note that the HzRG host would have gone unnoticed without its jets/companion, so there may be many other unseen BHs at high redshift, lost in the sea of ~5 x 10^8 similarly bright IRAC sources - sufficiently massive to drive a >10^27-W radio source, yet practically invisible unless actively fueled (abridged).

قيم البحث

اقرأ أيضاً

We present results from a continuing interferometric survey of high-redshift submillimeter galaxies with the Submillimeter Array, including high-resolution (beam size ~2 arcsec) imaging of eight additional AzTEC 1.1mm selected sources in the COSMOS F ield, for which we obtain six reliable (peak S/N>5 or peak S/N>4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N>4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric followup. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology - including the nature of submillimeter galaxies with multiple radio counterparts and constraints on the physical scale of the far infrared - of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim submillimeter galaxies that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation - which struggle to account for such objects even under liberal assumptions - and dust production models given the limited time since the Big Bang.
133 - Carlos De Breuck 2010
We present results from a comprehensive imaging survey of 70 radio galaxies at redshifts 1<z<5.2 using all three cameras onboard the Spitzer Space Telescope. The resulting spectral energy distributions unambiguously show a stellar population in 46 so urces and hot dust emission associated with the active nucleus in 59. Using a new restframe S_3um/S_1.6um versus S_um/S_3um criterion, we identify 42 sources where the restframe 1.6um emission from the stellar population can be measured. For these radio galaxies, the median stellar mass is high, 2x10^11 M_sun, and remarkably constant within the range 1<z<3. At z>3, there is tentative evidence for a factor of two decrease in stellar mass. This suggests that radio galaxies have assembled the bulk of their stellar mass by z~3, but confirmation by more detailed decomposition of stellar and AGN emission is needed. The restframe 500 MHz radio luminosities are only marginally correlated with stellar mass but are strongly correlated with the restframe 5um hot dust luminosity. This suggests that the radio galaxies have a large range of Eddington ratios. We also present new Very Large Array 4.86 and 8.46 GHz imaging of 14 radio galaxies and find that radio core dominance --- an indicator of jet orientation --- is strongly correlated with hot dust luminosity. While all of our targets were selected as narrow-lined, type 2 AGNs, this result can be understood in the context of orientation-dependent models if there is a continuous distribution of orientations from obscured type 2 to unobscured type 1 AGNs rather than a clear dichotomy. Finally, four radio galaxies have nearby (<6) companions whose mid-IR colors are suggestive of their being AGNs. This may indicate an association between radio galaxy activity and major mergers.
As part of an on-going study of radio transients in Epoch 1 (2017-2019) of the Very Large Array Sky Survey (VLASS), we have discovered a sample of 0.2<z<3.2 active galactic nuclei (AGN) selected in the optical/infrared that have recently brightened d ramatically in the radio. These sources would have previously been classified as radio-quiet based on upper limits from the Faint Images of the Radio Sky at Twenty-centimeters (FIRST; 1993-2011) survey; however, they are now consistent with radio-loud quasars. We present a quasi-simultaneous, multi-band (1-18 GHz) VLA follow-up campaign of our sample of AGN with extreme radio variability. We conclude that the radio properties are most consistent with AGN that have recently launched jets within the past few decades, potentially making them among the youngest radio AGN known.
58 - D. Weedman 2006
Spectra have been obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope for 20 sources in the Lockman Hole field of the SWIRE survey. The sample is divided between sources with indicators of an obscured AGN, based primarily on X-ray detections of optically-faint sources, and sources with indicators of a starburst, based on optical and near-infrared spectral energy distributions (SEDs) which show a luminosity peak from stellar photospheric emission. Ten of the 11 AGN sources have IRS spectra which show silicate absorption or are power laws; only one AGN source shows PAH emission features. All 9 of the sources showing starburst SEDs in the near-infrared show PAH emission features in the IRS spectra. Redshifts are determined from the IRS spectra for all 9 starbursts (1.0 < z < 1.9) and 8 of the 11 AGN (0.6 < z < 2.5). Classification as AGN because of an X-ray detection, the classification as AGN or starburst derived from the photometric SED, and the IRS spectroscopic classification as AGN (silicate absorption) or starburst (PAH emission) are all consistent in 18 of 20 sources. The surface density for starbursts which are most luminous in the mid-infrared is less than that for the most luminous AGN within the redshift interval 1.7 < z < 1.9. This result implies that mid-infrared source counts at high redshift are dominated by AGN for f(24micron) > 1.0 mJy.
241 - Michiel Reuland 2003
Perhaps as many as 10% of high redshift radio galaxy (HzRG; z > 2) candidates that are selected using an Ultra Steep radio Spectrum (USS) criterion fail to show optical emission (continuum, lines) in deep Keck exposures. Their parent objects are only detected in the near-IR and are probably heavily obscured and/or at very high redshift. To search for signatures of dust and help constrain the nature and redshifts of these ``no-z radio galaxies, we have conducted a program of submillimeter and millimeter observations. Here we report the first results of a detailed study of one of these objects, WN J0305+3525. WN J0305+3525 appears associated with a small group of K ~ 21 - 22 objects and is strongly detected at both 850 micron and 1.25 mm. On the basis of its faint K-band magnitude, spectral energy distribution (SED) and other evidence we estimate that the radio galaxy is probably at a redshift z = 3 +/- 1. This would make WN J0305+3525 a radio-loud Hyper Luminous Infrared Galaxy (LFIR ~ 10^13 Lsun) similar to, but more obscured than, other dusty radio galaxies in this redshift range. This, together with the absence of Lya emission and compact (theta < 1.9) radio structure, suggests that WN J0305+3525 is embedded in a very dense, dusty medium and is probably at an early stage of its formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا