ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase diagram of geometric d-wave superconductor Josephson junctions

328   0   0.0 ( 0 )
 نشر من قبل Andreas Gumann
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that a constriction-type Josephson junction realized by an epitactic thin film of a d-wave superconductor with an appropriate boundary geometry exhibits intrinsic phase differences between 0 and pi depending on geometric parameters and temperature. Based on microscopic Eilenberger theory, we provide a general derivation of the relation between the change of the free energy of the junction and the current-phase relation. From the change of the free energy, we calculate phase diagrams and discuss transitions driven by geometric parameters and temperature.



قيم البحث

اقرأ أيضاً

233 - T. Kirzhner , G. Koren 2010
Measurements of the differential conductance spectra of YBa2Cu3O7-SrRuO3 and YBa2Cu3O7-La0.67Ca_0.33MnO3 ramp-type junctions along the node and anti-node directions are reported. The results are consistent with a crossed Andreev reflection effect onl y in YBa2Cu3O7-SrRuO3 junctions where the domain wall width of SrRuO3 is comparable with the coherence length of YBa2Cu3O7. No such effect was observed in the YBa2Cu3O7-La0.67Ca0.33MnO3 junctions, which is in line with the much larger (x10) domain wall width of La0.67Ca0.33MnO3. We also show that crossed Andreev exists only in the anti-node direction. Furthermore, we find evidence that crossed Andreev in YBa2Cu3O7 junctions is not sensitive to nm-scale interface defects, suggesting that the length scale of the crossed Andreev effect is larger than the coherence length, but still smaller than the La0.67Ca0.33MnO3s domain wall width.
Three-dimensional topological insulators (TIs) in proximity with superconductors are expected to exhibit exotic phenomena such as topological superconductivity (TSC) and Majorana bound states (MBS), which may have applications in topological quantum computation. In superconductor-TI-superconductor Josephson junctions, the supercurrent versus the phase difference between the superconductors, referred to as the current-phase relation (CPR), reveals important information including the nature of the superconducting transport. Here, we study the induced superconductivity in gate-tunable Josephson junctions (JJs) made from topological insulator BiSbTeSe2 with superconducting Nb electrodes. We observe highly skewed (non-sinusoidal) CPR in these junctions. The critical current, or the magnitude of the CPR, increases with decreasing temperature down to the lowest accessible temperature (T ~ 20 mK), revealing the existence of low-energy modes in our junctions. The gate dependence shows that close to the Dirac point the CPR becomes less skewed, indicating the transport is more diffusive, most likely due to the presence of electron/hole puddles and charge inhomogeneity. Our experiments provide strong evidence that superconductivity is induced in the highly ballistic topological surface states (TSS) in our gate-tunable TI- based JJs. Furthermore, the measured CPR is in good agreement with the prediction of a model which calculates the phase dependent eigenstate energies in our system, considering the finite width of the electrodes as well as the TSS wave functions extending over the entire circumference of the TI.
A novel way to realize a pi Josephson junction is proposed, based on a weak link in an unconventional d-wave superconductor with appropriately chosen boundary geometry. The critical current of such a junction is calculated from a fully selfconsistent solution of microscopic Eilenberger theory of superconductivity. The results clearly show, that a transition to a pi Josephson junction occurs for both low temperatures and small sizes of the geometry.
147 - G. Burnell 2001
Since the discovery of superconductivity in MgB2 considerable progress has been made in determining the physical properties of the material, which are promising for bulk conductors. Tunneling studies show that the material is reasonably isotropic and has a well-developed s-wave energy gap (∆), implying that electronic devices based on MgB2 could operate close to 30K. Although a number of groups have reported the formation of thin films by post-reaction of precursors, heterostructure growth is likely to require considerable technological development, making single-layer device structures of most immediate interest. MgB2 is unlike the cuprate superconductors in that grain boundaries do not form good Josephson junctions, and although a SQUID based on MgB2 nanobridges has been fabricated, the nanobridges themselves do not show junction-like properties. Here we report the successful creation of planar MgB2 junctions by localised ion damage in thin films. The critical current (IC) of these devices is strongly modulated by applied microwave radiation and magnetic field. The product of the critical current and normal state resistance (ICRN) is remarkably high, implying a potential for very high frequency applications.
113 - T. Yokoyama , Y. Sawa , Y. Tanaka 2007
We study theoretically the Josephson effect in d-wave superconductor / diffusive normal metal /insulator/ diffusive normal metal/ d-wave superconductor (D/DN/I/DN/D) junctions. This model is aimed to describe practical junctions in high-$T_C$ cuprate superconductors, in which the product of the critical Josephson current ($I_C$) and the normal state resistance ($R$) (the so-called $I_{rm C}R$ product) is very small compared to the prediction of the standard theory. We show that the $I_{rm C}R$ product in D/DN/I/DN/D junctions can be much smaller than that in d-wave superconductor / insulator / d-wave superconductor junctions and formulate the conditions necessary to achieve large $I_{rm C}R$ product in D/DN/I/DN/D junctions. The proposed theory describes the behavior of $I_{rm C}R$ products quantitatively in high-$T_{rm C}$ cuprate junctions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا