ترغب بنشر مسار تعليمي؟ اضغط هنا

Locality, detection efficiencies, and probability polytopes

54   0   0.0 ( 0 )
 نشر من قبل Gernot Alber
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed investigation of minimum detection efficiencies, below which locality cannot be violated by any quantum system of any dimension in bipartite Bell experiments. Lower bounds on these minimum detection efficiencies are determined with the help of linear programming techniques. Our approach is based on the observation that any possible bipartite quantum correlation originating from a quantum state in an arbitrary dimensional Hilbert space is sandwiched between two probability polytopes, namely the local (Bell) polytope and a corresponding nonlocal no-signaling polytope. Numerical results are presented demonstrating the dependence of these lower bounds on the numbers of inputs and outputs of the bipartite physical system.

قيم البحث

اقرأ أيضاً

305 - G. Garbarino 2009
We discuss the problem of finding the most favorable conditions for closing the detection loophole in a test of local realism with a Bell inequality. For a generic non-maximally entangled two-qubit state and two alternative measurement bases we apply Hardys proof of non-locality without inequality and derive an Eberhard-like inequality. For an infinity of non-maximally entangled states we find that it is possible to refute local realism by requiring perfect detection efficiency for only one of the two measurements: the test is free from the detection loophole for any value of the detection efficiency corresponding to the other measurement. The maximum tolerable noise in a loophole-free test is also evaluated.
Inspired by the recent remarkable progress in the experimental test of local realism, we report here such a test that achieves an efficiency greater than (78%)^2 for entangled photon pairs separated by 183 m. Further utilizing the randomness in cosmi c photons from pairs of stars on the opposite sides of the sky for the measurement setting choices, we not only close the locality and detection loopholes simultaneously, but also test the null hypothesis against local hidden variable mechanisms for events that took place 11 years ago (13 orders of magnitude longer than previous experiments). After considering the bias in measurement setting choices, we obtain an upper bound on the p value of 7.87 * 10^-4, which clearly indicates the rejection with high confidence of potential local hidden variable models. One may further push the time constraint on local hidden variable mechanisms deep into the cosmic history by taking advantage of the randomness in photon emissions from quasars with large aperture telescopes.
180 - Robert B. Griffiths 2011
Stapps counterfactual argument for quantum nonlocality based upon a Hardy entangled state is shown to be flawed. While he has correctly analyzed a particular framework using the method of consistent histories, there are alternative frameworks which d o not support his argument. The framework dependence of quantum counterfactual arguments, with analogs in classical counterfactuals, vitiates the claim that nonlocal (superluminal) influences exist in the quantum world. Instead it shows that counterfactual arguments are of limited use for analyzing these questions.
100 - Harry Buhrman 2009
Quantum information processing is the emerging field that defines and realizes computing devices that make use of quantum mechanical principles, like the superposition principle, entanglement, and interference. In this review we study the information counterpart of computing. The abstract form of the distributed computing setting is called communication complexity. It studies the amount of information, in terms of bits or in our case qubits, that two spatially separated computing devices need to exchange in order to perform some computational task. Surprisingly, quantum mechanics can be used to obtain dramatic advantages for such tasks. We review the area of quantum communication complexity, and show how it connects the foundational physics questions regarding non-locality with those of communication complexity studied in theoretical computer science. The first examples exhibiting the advantage of the use of qubits in distributed information-processing tasks were based on non-locality tests. However, by now the field has produced strong and interesting quantum protocols and algorithms of its own that demonstrate that entanglement, although it cannot be used to replace communication, can be used to reduce the communication exponentially. In turn, these new advances yield a new outlook on the foundations of physics, and could even yield new proposals for experiments that test the foundations of physics.
106 - Dongkeun Lee , Wonmin Son 2021
We find non-localities, violation of local realism, in the many-body ground states of spin-1 XXZ chain with on-site anisotropy. In order to identify the non-localities in higher spin systems, we exploit the generalized version of multipartite Bell-ty pe inequalities which characterize symmetric entangled states under the most general settings via combination of high-order correlations. For a given set of unbiased measurements, we obtain a sharp violation of the multipartite Bell-type inequality at the vicinity of the quantum criticality, a type of the first-order, in the regime of large exchanges and strong on-site anisotropies. It signifies that impossibility of local realistic picture is manifested when a system is subjected to quantum phase transition between weekly entangled states via GHZ-like state. Our results provide the first extendible picture on the relationship between the impossibility of local realistic model and many-body quantum phases in higher-spin system as the observable identifies measurable quantities to detect the non-locality on a particular many-body quantum state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا