ﻻ يوجد ملخص باللغة العربية
Diffraction measurements performed via transmission electron microscopy and high resolution X-ray scattering reveal two distinct charge density wave transitions in Gd$_2$Te$_5$ at $T_{c1}$ = 410(3) and $T_{c2}$ = 532(3) K, associated with the textit{on}-axis incommensurate lattice modulation and textit{off}-axis commensurate lattice modulation respectively. Analysis of the temperature dependence of the order parameters indicates a non-vanishing coupling between these two distinct CDW states.
We investigate the rare-earth polychalcogenide $R_2$Te$_5$ ($R$=Nd, Sm and Gd) charge-density-wave (CDW) compounds by optical methods. From the absorption spectrum we extract the excitation energy of the CDW gap and estimate the fraction of the Fermi
Charge density waves (CDW) are modulations of the electron density and the atomic lattice that develop in some crystalline materials at low temperature. We report an unusual example of a CDW in BaFe$_2$Al$_9$ below 100 K. In contrast to the canonical
The Fermi surface (FS) of ErTe3 is investigated using angle-resolved photoemission spectroscopy (ARPES). Low temperature measurements reveal two incommensurate charge density wave (CDW) gaps created by perpendicular FS nesting vectors. A large Delta_
We investigate the thermal-driven charge density wave (CDW) transition of two cubic superconducting intermetallic systems Lu(Pt1-xPdx)2In and (Sr1-xCax)3Ir4Sn13 by means of x-ray diffraction technique. A detailed analysis of the CDW modulation superl
The so-called stripe phase of the manganites is an important example of the complex behaviour of metal oxides, and has long been interpreted as the localisation of charge at atomic sites. Here, we demonstrate via resistance measurements on La_{0.50}C