ﻻ يوجد ملخص باللغة العربية
We have performed an angle-resolved photoemission spectroscopy study of the new superconductor Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ in the low energy range. We report the observation of an anomaly around 25 meV in the dispersion of superconducting Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ samples that nearly vanishes above $T_c$. The energy scale of the related mode (13$pm$2 meV) and its strong dependence on orbital and temperature indicates that it is unlikely related to phonons. Moreover, the momentum locations of the kink can be connected by the antiferromagnetic wavevector. Our results point towards an unconventional electronic origin of the mode and the superconducting pairing in the Fe-based superconductors, and strongly support the anti-phase s-wave pairing symmetry.
We report on orbital-dependent quasiparticle dynamics in EuFe$_2$As$_2$, a parent compound of Fe-based superconductors and a novel way to experimentally identify this behavior, using time- and angle-resolved photoelectron spectroscopy across the spin
We study the spin resonance peak in recently discovered iron-based superconductors. The resonance peak observed in inelastic neutron scattering experiments agrees well with predicted results for the extended $s$-wave ($s_pm$) gap symmetry. Recent neu
We put forth a mechanism for enhancing the interlayer transport in cuprate superconductors, by optically driving plasmonic excitations along the $c$ axis with a frequency that is blue-detuned from the Higgs frequency. The plasmonic excitations induce
In this work, we study the A$_{x}$Fe$_{2-y}$Se$_2$ (A=K, Rb) superconductors using angle-resolved photoemission spectroscopy. In the low temperature state, we observe an orbital-dependent renormalization for the bands near the Fermi level in which th
Evidence from NMR of a two-component spin system in cuprate high-$T_c$ superconductors is shown to be paralleled by similar evidence from the electronic entropy so that a two-component quasiparticle fluid is implicated. We propose that this two-compo