ترغب بنشر مسار تعليمي؟ اضغط هنا

Long wavelength limit of two dimensional photonic crystals

320   0   0.0 ( 0 )
 نشر من قبل Siu Tat Chui
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We solve {bf analytically} the multiple scattering (KKR) equations for the two dimensional photonic crystals in the long wavelength limit. Different approximations of the electric and magnetic susceptibilities are presented from a unified pseudopotential point of view. The nature of the so called plasmon-polariton bands are clarified. Its frequency as a function of the wire radius is discussed.



قيم البحث

اقرأ أيضاً

Two-photon polymerization has been demonstrated as an effective technique to define embedded defects in three-dimensional photonic crystals. In this work we demonstrate the ability to precisely position embedded defects with respect to the lattice of three-dimensional photonic crystals by imaging the structure concurrently with two-photon writing. Defects are written with near-perfect lattice registration and at specifically defined depths within the crystal. The importance of precise defect position is demonstrated by investigating the optical properties of embedded planar cavities written in a photonic crystal. The experimental data is compared to spectra calculated using the Scalar Wave Approximation (SWA) which further demonstrates the importance of defect placement.
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Scanning tunneling spectroscopy suggests the formation of a two dimensional electron gas (2DEG) on the TiO2 terminated surface of undoped SrTiO3 single crystals annealed at temperature lower than 400 {deg}C in ultra high vacuum conditions. Low energy electron diffraction indicates that the 2D metallic SrTiO3 surface is not structurally reconstructed, suggesting that non-ordered oxygen vacancies created in the annealing process introduce carriers leading to an electronic reconstruction. The experimental results are interpreted in a frame of competition between oxygen diffusion from the bulk to the surface and oxygen loss from the surface itself.
We present first-principles calculations of elastic properties of multilayered two-dimensional crystals such as graphene, h-BN and 2H-MoS2 which shows that their Poissons ratios along out-of-plane direction are negative, near zero and positive, respe ctively, spanning all possibilities for sign of the ratios. While the in-plane Poissons ratios are all positive regardless of their disparate electronic and structural properties, the characteristic interlayer interactions as well as layer stacking structures are shown to determine the sign of their out-of-plane ratios. Thorough investigation of elastic properties as a function of the number of layers for each system is also provided, highlighting their intertwined nature between elastic and electronic properties.
66 - Chun Xu , Dezhuan Han , Xin Wang 2005
Doped semiconductors are intrinsically homogeneous media. However, by applying an external magnetic field that has a spatially periodic variation, doped semiconductors can behave extrinsically like conventional photonic crystals. We show this possibi lity theoretically by calculating the photonic band structures of a doped semiconductor under an external, spatially periodic magnetic field. Homogeneous media, behaving like conventional photonic crystals under some external, spatially periodic fields, define a new kind of photonic crystals: extrinsic photonic crystals. The proposed extrinsic photonic crystals could not only extend the concept of photonic crystals but also lead to the control of the dispersion and propagation of electromagnetic waves in a unique way: simply manipulating the externally applied fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا