ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling Carbon Chain Anions in L1527

242   0   0.0 ( 0 )
 نشر من قبل Nanase Harada
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The low-mass protostellar region L1527 is unusual because it contains observable abundances of unsaturated carbon-chain molecules including CnH radicals, H2Cn carbenes, cyanopolyynes, and the negative ions C4H- and C6H-, all of which are more associated with cold cores than with protostellar regions. Sakai et al. suggested that these molecules are formed in L1527 from the chemical precursor methane, which evaporates from the grains during the heat-up of the region. With the gas-phase osu.03.2008 network extended to include negative ions of the families Cn-, and CnH-, as well as the newly detected C3N-, we modeled the chemistry that occurs following methane evaporation at T~ 25-30 K. We are able to reproduce most of the observed molecular abundances in L1527 at a time of ~5000 yr. At later times, the overall abundance of anions become greater than that of electrons, which has an impact on many organic species and ions. The anion-to-neutral ratio in our calculation is in good agreement with observation for C6H- but exceeds the observed ratio by more than three orders of magnitude for C4H-. In order to explain this difference, further investigation is needed on the rate coefficients for electron attachment and other reactions regarding anions.



قيم البحث

اقرأ أيضاً

Cassini discovered a plethora of neutral and ionised molecules in Titans ionosphere including, surprisingly, anions and negatively charged molecules extending up to 13,800 u/q. In this letter we forward model the Cassini electron spectrometer respons e function to this unexpected ionospheric component to achieve an increased mass resolving capability for negatively charged species observed at Titan altitudes of 950-1300 km. We report on detections consistently centered between 25.8-26.0 u/q and between 49.0-50.1 u/q which are identified as belonging to the carbon chain anions, CN$^-$/C$_3$N$^-$ and/or C$_2$H$^-$/C$_4$H$^-$, in agreement with chemical model predictions. At higher ionospheric altitudes, detections at 73-74 u/q could be attributed to the further carbon chain anions C$_5$N$^-$/C$_6$H$^-$ but at lower altitudes and during further encounters, extend over a higher mass/charge range. This, as well as further intermediary anions detected at $>$100 u, provide the first evidence for efficient anion chemistry in space involving structures other than linear chains. Furthermore, at altitudes below $sim$1100 km, the low mass anions ($<$150 u/q) were found to deplete at a rate proportional to the growth of the larger molecules, a correlation that indicates the anions are tightly coupled to the growth process. This study adds Titan to an increasing list of astrophysical environments where chain anions have been observed and shows that anion chemistry plays a role in the formation of complex organics within a planetary atmosphere as well as in the interstellar medium.
We report a sensitive search for the rotational transitions of the carbon chain alcohol HC4OH in the frequency range of 21.2-46.7 GHz in the star-forming region L1527 and the dark cloud TMC-1. The motivation was laboratory detection of HC4OH by micro wave spectroscopy. Despite achieving rms noise levels of several millikelvin in the antenna temperature using the 45 m telescope at Nobeyama Radio Observatory, the detection was not successful, leading to 3 sigma upper limits corresponding to the column densities of 2.0 times 1012 and 5.6 times 1012 cm-2 in L1527 and TMC-1, respectively. These upper limits indicate that [HC4OH]/[HC5N] ratios are less than 0.3 and 0.1 in L1527 and TMC-1, respectively, where HC5N is an HC4-chain cyanide and HC4OH is a hydroxide. These ratios suggest that the cyano carbon chain molecule dominates the hydroxyl carbon chain molecule in L1527 and TMC-1. This is contrary to the case of saturated compounds in hot cores, e.g., CH3OH and CH3CN, and can be a chemical feature of carbon chain molecules in L1527 and TMC-1. In addition, the column densities of the unsubstituted carbon chain molecule C4H and the sulfur-bearing molecules SO and HCS+ were determined from detected lines in L1527.
207 - John J. Tobin 2013
We present high-resolution sub/millimeter interferometric imaging of the Class 0 protostar L1527 IRS (IRAS 04368+2557) at 870 micron and 3.4 mm from the Submillimeter Array (SMA) and Combined Array for Research in Millimeter Astronomy (CARMA). We det ect the signature of an edge-on disk surrounding the protostar with an observed diameter of 180 AU in the sub/millimeter images. The mass of the disk is estimated to be 0.007 M_sun, assuming optically thin, isothermal dust emission. The millimeter spectral index is observed to be quite shallow at all the spatial scales probed; alpha ~ 2, implying a dust opacity spectral index beta ~ 0. We model the emission from the disk and surrounding envelope using Monte Carlo radiative transfer codes, simultaneously fitting the sub/millimeter visibility amplitudes, sub/millimeter images, resolved Larcmin image, spectral energy distribution, and mid-infrared spectrum. The best fitting model has a disk radius of R = 125 AU, is highly flared (H ~ R^1.3), has a radial density profile rho ~ R^-2.5, and has a mass of 0.0075 M_sun. The scale height at 100 AU is 48 AU, about a factor of two greater than vertical hydrostatic equilibrium. The resolved millimeter observations indicate that disks may grow rapidly throughout the Class 0 phase. The mass and radius of the young disk around L1527 is comparable to disks around pre-main sequence stars; however, the disk is considerably more vertically extended, possibly due to a combination of lower protostellar mass, infall onto the disk upper layers, and little settling of ~1 micron-sized dust grains.
We model Spitzer Space Telescope observations of the Taurus Class 0 protostar L1527 IRS (IRAS 04368+2557) to provide constraints on its protostellar envelope structure. The nearly edge-on inclination of L1527 IRS, coupled with the highly spatially-re solved near to mid-infrared images of this object and the detailed IRS spectrum, enable us to constrain the outflow cavity geometry quite well, reducing uncertainties in the other derived parameters. The mid-infrared scattered light image shows a bright central source within a dark lane; the aspect ratio of this dark lane is such that it appears highly unlikely to be a disk shadow. In modeling this dark lane, we conclude that L1527 IRS is probably not described by a standard TSC envelope with simple bipolar cavities. We find it necessary to model the dark lane and central source as a modified inner envelope structure. This structure may be due either to a complex wind-envelope interaction or induced by the central binary. To fit the overall SED, we require the central source to have a large near to mid-infrared excess, suggesting substantial disk accretion. Our model reproduces the overall morphology and surface brightness distribution of L1527 IRS fairly well, given the limitations of using axisymmetric models to fit the non-axisymmetric real object, and the derived envelope infall rates are in reasonable agreement with some other investigations. IRAC observations of L1527 IRS taken 12 months apart show variability in total flux and variability in the opposing bipolar cavities, suggesting asymmetric variations in accretion. We also provide model images at high resolution for comparison to future observations with current ground-based instrumentation and future space-based telescopes.
We report on new measurements of m-fold photodetachment (m=2-5) of carbon anions via K-shell excitation and ionization. The experiments were carried out employing the photon-ion merged-beams technique at a synchrotron light source. While previous mea surements were restricted to double detachment (m=2) and to just the lowest-energy K-shell resonance at about 282 eV, our absolute experimental $m$-fold detachment cross sections at photon energies of up to 1000 eV exhibit a wealth of new thresholds and resonances. We tentatively identify these features with the aid of detailed atomic-structure calculations. In particular, we find unambiguous evidence for fivefold detachment via double K-hole production.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا