ﻻ يوجد ملخص باللغة العربية
We present a distance measurement for the semiregular variable S Crateris (S Crt) based on its annual parallax. With the unique dual beam system of the VLBI Exploration for Radio Astrometry (VERA) telescopes, we measured the absolute proper motion of a water maser spot associated with S Crt, referred to the quasar J1147-0724 located at an angular separation of 1.23$^{circ}$. In observations spanning nearly two years, we have detected the maser spot at the LSR velocity of 34.7 km s$^{-1}$, for which we measured the annual parallax of 2.33$pm$0.13 mas corresponding to a distance of 430$^{+25}_{-23}$ pc. This measurement has an accuracy one order of magnitude better than the parallax measurements of HIPPARCOS. The angular distribution and three-dimensional velocity field of maser spots indicate a bipolar outflow with the flow axis along northeast-southwest direction. Using the distance and photospheric temperature, we estimate the stellar radius of S Crt and compare it with those of Mira variables.
We conducted phase referencing VLBI observations of the Mira variable T~Lepus (T~Lep) using VERA, from 2003 to 2006. The distance to the source was determined from its annual parallax which was measured to be 3.06$pm$0.04 mas, corresponding to a dist
We obtained, for the first time, astrometrically registered maps of the 22.2 GHz H2O and 42.8, 43.1, and 86.2 GHz SiO maser emission toward the semiregular b-type variable (SRb) R Crateris, at three epochs (2015 May 21, and 2016 January 7 and 26) usi
Many studies have shown that there are clear sequences in the period-luminosity relationship (PLR) for Mira variables and semiregular variables (SRVs) in the Large Magellanic Cloud (LMC). To investigate the PLR for SRVs in our galaxy, we examined the
We monitored water-vapor masers around the semi-regular variable star R Crateris with the Japanese VLBI Network (J-Net) at the 22 GHz band during four epochs with intervals of one month. The relative proper motions and Doppler-velocity drifts of twel
We present the first astrometry catalog from the Japanese VLBI (very long baseline interferometer) project VERA (VLBI Exploration of Radio Astrometry). We have compiled all the astrometry results from VERA, providing accurate trigonometric annual par