ترغب بنشر مسار تعليمي؟ اضغط هنا

The TEXES Survey For H2 Emission From Protoplanetary Disks

255   0   0.0 ( 0 )
 نشر من قبل Martin Bitner
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the results of a search for pure rotational molecular hydrogen emission from the circumstellar environments of young stellar objects with disks using the Texas Echelon Cross Echelle Spectrograph (TEXES) on the NASA Infrared Telescope Facility and the Gemini North Observatory. We searched for mid-infrared H2 emission in the S(1), S(2), and S(4) transitions. Keck/NIRSPEC observations of the H2 S(9) transition were included for some sources as an additional constraint on the gas temperature. We detected H2 emission from 6 of 29 sources observed: AB Aur, DoAr 21, Elias 29, GSS 30 IRS 1, GV Tau N, and HL Tau. Four of the six targets with detected emission are class I sources that show evidence for surrounding material in an envelope in addition to a circumstellar disk. In these cases, we show that accretion shock heating is a plausible excitation mechanism. The detected emission lines are narrow (~10 km/s), centered at the stellar velocity, and spatially unresolved at scales of 0.4 arcsec, which is consistent with origin from a disk at radii 10-50 AU from the star. In cases where we detect multiple emission lines, we derive temperatures > 500 K from ~1 M_earth of gas. Our upper limits for the non-detections place upper limits on the amount of H2 gas with T > 500 K of less than a few Earth masses. Such warm gas temperatures are significantly higher than the equilibrium dust temperatures at these radii, suggesting that the gas is decoupled from the dust in the regions we are studying and that processes such as UV, X-ray, and accretion heating may be important.



قيم البحث

اقرأ أيضاً

We describe the TEXES survey for mid-IR H2 pure rotational emission from young stars and report early successes. H2 emission is a potential tracer of warm gas in circumstellar disks. Three pure rotational lines are available from the ground: the J=3= >1, J=4=>2, and J=6=>4, transitions at 17.035 microns, 12.279 microns, and 8.025 microns, respectively. Using TEXES at the NASA IRTF 3m, we are midway through a survey of roughly 30 pre-main-sequence stars. To date, detected lines are all resolved, generally with FWHM<10 km/s. Preliminary analysis suggests the gas temperatures are between 400 and 800 K. From the work so far, we conclude that high spectral and spatial resolution are critical to the investigation of H2 in disks.
We present observations of pure rotational molecular hydrogen emission from the Herbig Ae star, AB Aurigae. Our observations were made using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility and the Gemini N orth Observatory. We searched for H2 emission in the S(1), S(2), and S(4) lines at high spectral resolution and detected all three. By fitting a simple model for the emission in the three transitions, we derive T = 670 +/- 40 K and M = 0.52 +/- 0.15 earth masses for the emitting gas. Based on the 8.5 km/s FWHM of the S(2) line, assuming the emission comes from the circumstellar disk, and with an inclination estimate of the AB Aur system taken from the literature, we place the location for the emission near 18 AU. Comparison of our derived temperature to a disk structure model suggests that UV and X-ray heating are important in heating the disk atmosphere.
We present a large, comprehensive survey of rovibrational CO line emission at 4.7 micron from 69 protoplanetary disks, obtained with CRIRES on the ESO Very Large Telescope at the highest available spectral resolving power (R=95,000, v=3.2 km/s). The CO fundamental band (Delta v=1) is a well-known tracer of warm gas in the inner, planet-forming regions of gas-rich disks around young stars, with the lines formed in the super-heated surfaces of the disks at radii of 0.1-10 AU. Our high spectral resolution data provide new insight into the kinematics of the inner disk gas. Pure double-peaked Keplerian profiles are surprisingly uncommon, beyond the frequency expected based on disk inclination. The majority of the profiles are consistent with emission from a disk plus a slow (few km/s) molecular disk wind. This is evidenced by analysis of different categories as well as an overall tendency for line profiles to have excess blue emission. Weak emission lines from isotopologues and vibrationally excited levels are readily detected. In general, 13CO lines trace cooler gas than the bulk 12CO emission and may arise from further out in the disk, as indicated by narrower line profiles. A high fraction of the sources show vibrationally excited emission (~50%) which is correlated with accretion luminosity, consistent with ultra-violet (UV) fluorescent excitation. Disks around early-type Herbig AeBe stars have narrower lines, on average, than their lower-mass late-type counterparts, due to their increased luminosity. Evolutionary changes in CO are also seen. Removal of the protostellar envelope between class I and II results in the disappearance of the strong absorption lines and CO ice feature characteristic of class I spectra. However, CO emission from class I and II objects is similar in detection frequency, excitation and line shape, indicating that inner disk characteristics are established early.
We analyze the far-ultraviolet (FUV) spectra of 33 classical T Tauri stars (CTTS), including 20 new spectra obtained with the Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) on the Hubble Space Telescope. Of the sources, 28 are in the ~1 My r old Taurus-Auriga complex or Orion Molecular Cloud, 4 in the 8-10 Myr old Orion OB1a complex and one, TW Hya, in the 10 Myr old TW Hydrae Association. We also obtained FUV ACS/SBC spectra of 10 non-accreting sources surrounded by debris disks with ages between 10 and 125 Myr. We use a feature in the FUV spectra due mostly to electron impact excitation of h2 to study the evolution of the gas in the inner disk. We find that the h2 feature is absent in non-accreting sources, but is detected in the spectra of CTTS and correlates with accretion luminosity. Since all young stars have active chromospheres which produce strong X-ray and UV emission capable of exciting h2 in the disk, the fact that the non-accreting sources show no h2 emission implies that the h2 gas in the inner disk has dissipated in the non-accreting sources, although dust (and possibly gas) remains at larger radii. Using the flux at 1600 {AA}, we estimate that the column density of h2 left in the inner regions of the debris disks in our sample is less than ~ 3x10^-6 g cm^-2, nine orders of magnitude below the surface density of the minimum mass solar nebula at 1 AU.
We report on a limited search for pure-rotational molecular hydrogen emission associated with young, pre-main-sequence stars. We looked for H_2 v=0 J = 3->1 and J = 4->2 emission in the mid-infrared using the Texas Echelon-Cross-Echelle Spectrograph (TEXES) at NASAs 3m Infrared Telescope Facility. The high spectral and spatial resolution of our observations lead to more stringent limits on narrow line emission close to the source than previously achieved. One star, AB Aur, shows a possible (2sigma) H_2 detection, but further observations are required to make a confident statement. Our non-detections suggest that a significant fraction, perhaps all, of previously reported H_2 emission towards these objects could be extended on scales of 5 or more.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا