ﻻ يوجد ملخص باللغة العربية
We have investigated the behavior of the resistance of graphene at the $n=0$ Landau Level in an intense magnetic field $H$. Employing a low-dissipation technique (with power $P<$3 fW), we find that, at low temperature $T$, the resistance at the Dirac point $R_0(H)$ undergoes a 1000-fold increase from $sim$10 k$Omega$ to 40 M$Omega$ within a narrow interval of field. The abruptness of the increase suggests that a transition to an insulating, ordered state occurs at the critical field $H_c$. Results from 5 samples show that $H_c$ depends systematically on the disorder, as measured by the offset gate voltage $V_0$. Samples with small $V_0$ display a smaller critical field $H_c$. Empirically, the steep increase in $R_0$ fits acccurately a Kosterlitz-Thouless-type correlation length over 3 decades. The curves of $R_0$ vs. $T$ at fixed $H$ approach the thermal-activation form with a gap $Deltasim$15 K as $Hto H_c^{-}$, consistent with a field-induced insulating state.
Spin splitting in the integer quantum Hall effect is investigated for a series of Al$_{x}$Ga$_{1-x}$As/GaAs heterojunctions and quantum wells. Magnetoresistance measurements are performed at mK temperature to characterize the electronic density of st
Recent experiments reveal a significant increase in the graphene Fermi velocity close to charge neutrality. This has widely been interpreted as a confirmation of the logarithmic divergence of the graphene Fermi velocity predicted by a perturbative ap
A weak perpendicular magnetic field, $B$, breaks the chiral symmetry of each valley in the electron spectrum of graphene, preserving the overall chiral symmetry in the Brillouin zone. We explore the consequences of this symmetry breaking for the inte
Graphene in the quantum Hall regime exhibits a multi-component structure due to the electronic spin and chirality degrees of freedom. While the applied field breaks the spin symmetry explicitly, we show that the fate of the chirality SU(2) symmetry i
The electronic properties of graphene have been intensively investigated over the last decade, and signatures of the remarkable features of its linear Dirac spectrum have been displayed using transport and spectroscopy experiments. In contrast, the