ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic light-on-heavy nuclear collisions and the implied rapidity asymmetry

95   0   0.0 ( 0 )
 نشر من قبل Adeola Adeluyi
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Adeola Adeluyi




اسأل ChatGPT حول البحث

We calculate pseudorapidity ($eta$) asymmetry in $pA$ and $dA$ collisions in a pQCD-improved parton model. With the calculations tuned to describe existing spectra from $pp$ collisions and asymmetric systems at midrapidity and large rapidities at FNAL and RHIC energies, we investigate the roles of nuclear shadowing and multiple scattering on the observed asymmetry. Using this framework, we make predictions for pseudorapidity asymmetries at high $p_T$ and large $eta$ in a wide range of energies up to LHC.

قيم البحث

اقرأ أيضاً

This study aims at understanding the nature of measured data on the rapidity spectra of some heavy baryons [$Lambda$, $Lambda$bar, $Xi^-$ & $Xi$bar$^+$] produced in the nuclear collisions at some modestly high energies. Furthermore, our objective is also to build up a comprehensive and consistent methodology to analyze the data on this specific observable which has a very important place in the domain of High Energy Physics (HEP). On an overall basis, our target here attains a moderate degree of success even for production of such rare secondaries. In addition to this, the limitations of such an approach have also been pointed out.
62 - C.Slotta , J.Sollfrank , U.Heinz 1995
It was recently found that in sulphur-induced nuclear collisions at 200 A GeV the observed strange hadron abundances can be explained within a thermodynamic model where baryons and mesons separately are in a state of relative chemical equilibrium, wi th overall strangeness being slightly undersaturated, but distributed among the strange hadron channels according to relative chemical equilibrium with a vanishing strange quark chemical potential. We develop a consistent thermodynamic formulation of the concept of relative chemical equilibrium and show how to introduce into the partition function deviations from absolute chemical equilibrium, e.~g.~an undersaturation of overall strangeness or the breaking of chemical equilibrium between mesons and baryons. We then proceed to test on the available data the hypothesis that the strange quark chemical potential vanishes everywhere, and that the rapidity distributions of all the observed hadrons can be explained in terms of one common, rapidity-dependent function $mu_{rm q}(eta)$ for the baryon chemical potential only. The aim of this study is to shed light on the observed strong rapidity dependence of the strange baryon ratios in the NA36 experiment.
42 - I.Zborovsky 2002
Assuming fractality of hadronic constituents, we argue that asymmetry of space-time can be induced in the ultra-relativistic interactions of hadrons and nuclei. The asymmetry is expressed in terms of the anomalous fractal dimensions of the colliding objects. Besides state of motion, the relativistic principle is applied to the state of asymmetry as well. Such realization of relativity concerns scale dependence of physical laws emerging at small distances. We show that induced asymmetries of space-time are a priori not excluded by the Michelsons experiment even at large scales.
We discuss the rapidity distribution of produced jets in heavy-ion collisions at LHC. The process allows one to determine to a good accuracy the value of the impact parameter of the nuclear collision in each single inelastic event. The knowledge of t he geometry is a powerful tool for a detailed analysis of the process, making it possible to test the various different elements which, in accordance with present theoretical ideas, take part to the production mechanism.
Relativistic models can be successfully applied to the description of compact star properties in nuclear astrophysics as well as to nuclear matter and finite nuclei properties, these studies taking place at low and moderate temperatures. Nevertheless , all results are model dependent and so far it is unclear whether some of them should be discarded. Moreover, in the regime of hot hadronic matter very few calculations exist using these relativistic models, in particular when applied to particle yields in heavy ion collisions. In the present work we comment on the known constraints that can help the selection of adequate models in this regime and investigate the main differences that arise when the particle production during a Au+Au collision at RHIC is calculated with different models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا