ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of the reduced exchange bias in epitaxial FeNi(111)/CoO(111) bilayer

76   0   0.0 ( 0 )
 نشر من قبل Florin Radu
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have employed Soft and Hard X-ray Resonant Magnetic Scattering and Polarised Neutron Diffraction to study the magnetic interface and the bulk antiferromagnetic domain state of the archetypal epitaxial Ni$_{81}$Fe$_{19}$(111)/CoO(111) exchange biased bilayer. The combination of these scattering tools provides unprecedented detailed insights into the still incomplete understanding of some key manifestations of the exchange bias effect. We show that the several orders of magnitude difference between the expected and measured value of exchange bias field is caused by an almost anisotropic in-plane orientation of antiferromagnetic domains. Irreversible changes of their configuration lead to a training effect. This is directly seen as a change in the magnetic half order Bragg peaks after magnetization reversal. A 30 nm size of antiferromagnetic domains is extracted from the width the (1/2 1/2 1/2) antiferromagnetic magnetic peak measured both by neutron and x-ray scattering. A reduced blocking temperature as compared to the measured antiferromagnetic ordering temperature clearly corresponds to the blocking of antiferromagnetic domains. Moreover, an excellent correlation between the size of the antiferromagnetic domains, exchange bias field and frozen-in spin ratio is found, providing a comprehensive understanding of the origin of exchange bias in epitaxial systems.


قيم البحث

اقرأ أيضاً

We have performed electron energy-loss spectroscopy (EELS) studies of Ni(111), graphene/Ni(111), and the graphene/Au/Ni(111) intercalation-like system at different primary electron energies. A reduced parabolic dispersion of the pi plasmon excitation for the graphene/Ni(111) system is observed compared to that for bulk pristine and intercalated graphite and to linear for free graphene, reflecting the strong changes in the electronic structure of graphene on Ni(111) relative to free-standing graphene. We have also found that intercalation of gold underneath a graphene layer on Ni(111) leads to the disappearance of the EELS spectral features which are characteristic of the graphene/Ni(111) interface. At the same time the shift of the pi plasmon to the lower loss-energies is observed, indicating the transition of initial system of strongly bonded graphene on Ni(111) to a quasi free-standing-like graphene state.
We report direct measurements via angle-resolved photoemission spectroscopy (ARPES) of the electronic dispersion of single-layer CoO$_2$. The Fermi contour consists of a large hole pocket centered at the $overline{Gamma}$ point. To interpret the ARPE S results, we use density functional theory (DFT) in combination with the multi-orbital Gutzwiller Approximation (DFT+GA), basing our calculations on crystalline structure parameters derived from x-ray photoelectron diffraction and low-energy electron diffraction. Our calculations are in good agreement with the measured dispersion. We conclude that the material is a moderately correlated metal. We also discuss substrate effects, and the influence of hydroxylation on the CoO$_2$ single-layer electronic structure.
126 - Xiao Li , Hai-Wen Liu , Hua Jiang 2014
A topological insulator is a novel quantum state, characterized by symmetry-protected non-trivial edge/surface states. Our first-principle simulations show the significant effects of the chemical decoration on edge states of topological Bi(111) bilay er nanoribbon, which remove the trivial edge state and recover the Dirac linear dispersion of topological edge state. By comparing the edge states with and without chemical decoration, the Bi(111) bilayer nanoribbon offers a simple system for assessing conductance fluctuation of edge states. The chemical decoration can also modify the penetration depth and the spin texture of edge states. A low-energy effective model is proposed to explain the distinctive spin texture of Bi(111) bilayer nanoribbon, which breaks the spin-momentum orthogonality along the armchair edge.
We have studied in-gap states in epitaxial CoFe2O4(111), which potentially acts as a perfect spin filter, grown on a Al2O3(111)/Si(111) structure by using ellipsometry, Fe L2,3-edge x-ray absorption spectroscopy (XAS), and Fe L2,3-edge resonant inela stic x-ray scattering (RIXS), and revealed the relation between the in-gap states and chemical defects due to the Fe2+ cations at the octahedral sites (Fe2+ (Oh) cations). The ellipsometry measurements showed the indirect band gap of 1.24 eV for the CoFe2O4 layer and the Fe L2,3-edge XAS confirmed the characteristic photon energy for the preferential excitation of the Fe2+ (Oh) cations. In the Fe L3-edge RIXS spectra, a band-gap excitation and an excitation whose energy is smaller than the band-gap energy (Eg = 1.24 eV) of CoF2O4, which we refer to as below-band-gap excitation (BBGE) hereafter, were observed. The intensity of the BBGE was strengthened at the preferential excitation energy of the Fe2+ (Oh) cations. In addition, the intensity of the BBGE was significantly increased when the thickness of the CoFe2O4 layer was decreased from 11 to 1.4 nm, which coincides with the increase in the site occupancy of the Fe2+ (Oh) cations with decreasing the thickness. These results indicate that the BBGE comes from the in-gap states of the Fe2+ (Oh) cations whose density increases near the heterointerface on the bottom Al2O3 layer. We have demonstrated that RIXS measurements and analyses in combination with ellipsometry and XAS are effective to provide an insight into in-gap states in thin-film oxide heterostructures.
The growth and characterization of epitaxial Co3O4(111) films grown by oxygen plasma-assisted molecular beam epitaxy on single crystalline a-Al2O3(0001) is reported. The Co3O4(111) grows single crystalline with the epitaxial relation Co3O4(111)[-12-1 ]||a-Al2O3(0001)[10-10], as determined from in situ electron diffraction. Film stoichiometry is confirmed by x-ray photoelectron spectroscopy, while ex situ x-ray diffraction measurements show that the Co3O4 films are fully relaxed. Post-growth annealing induces significant modifications in the film morphology, including a sharper Co3O4/a-Al2O3 interface and improved surface crystallinity, as shown by x-ray reflectometry, atomic force microscopy and electron diffraction measurements. Despite being polar, the surface of both as-grown and annealed Co3O4(111) films are (1 * 1), which can be explained in terms of inversion in the surface spinel structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا