ترغب بنشر مسار تعليمي؟ اضغط هنا

An Improved Model for Relativistic Solar Proton Acceleration applied to the 2005 January 20 and Earlier Events

38   0   0.0 ( 0 )
 نشر من قبل Marc Duldig
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents results on modelling the ground level response of the higher energy protons for the 2005 January 20 ground level enhancement (GLE). This event, known as GLE 69, produced the highest intensity of relativistic solar particles since the famous event on 1956 February 23. The location of recent X-ray and gamma-ray emission (N14 W61) was near to Sun-Earth connecting magnetic field lines, thus providing the opportunity to directly observe the acceleration source from Earth. We restrict our analysis to protons of energy greater than 450 MeV to avoid complications arising from transport processes that can affect the propagation of low energy protons. In light of this revised approach we have reinvestigated two previous GLEs: those of 2000 July 14 (GLE 59) and 2001 April 15 (GLE 60). Within the limitations of the spectral forms employed, we find that from the peak (06:55 UT) to the decline (07:30 UT) phases of GLE 69, neutron monitor observations from 450 MeV to 10 GeV are best fitted by the Gallegos-Cruz & Perez-Peraza stochastic acceleration model. In contrast, the Ellison & Ramaty spectra did not fit the neutron monitor observations as well. This result suggests that for GLE 69, a stochastic process cannot be discounted as a mechanism for relativistic particle acceleration, particularly during the initial stages of this solar event. For GLE 59 we find evidence that more than one acceleration mechanism was present, consistent with both shock and stochastic acceleration processes dominating at different times of the event. For GLE 60 we find that Ellison & Ramaty spectra better represent the neutron monitor observations compared to stochastic acceleration spectra. The results for GLEs 59 and 60 are in agreement with our previous work.

قيم البحث

اقرأ أيضاً

53 - V. V. Grechnev 2008
The extreme solar and SEP event of 20 January 2005 is analyzed from two perspectives. Firstly, we study features of the main phase of the flare, when the strongest emissions from microwaves up to 200 MeV gamma-rays were observed. Secondly, we relate our results to a long-standing controversy on the origin of SEPs arriving at Earth, i.e., acceleration in flares, or shocks ahead of CMEs. All emissions from microwaves up to 2.22 MeV line gamma-rays during the main flare phase originated within a compact structure located just above sunspot umbrae. A huge radio burst with a frequency maximum at 30 GHz was observed, indicating the presence of a large number of energetic electrons in strong magnetic fields. Thus, protons and electrons responsible for flare emissions during its main phase were accelerated within the magnetic field of the active region. The leading, impulsive parts of the GLE, and highest-energy gamma-rays identified with pi^0-decay emission, are similar and correspond in time. The origin of the pi^0-decay gamma-rays is argued to be the same as that of lower energy emissions. We estimate the sky-plane speed of the CME to be 2000-2600 km/s, i.e., high, but of the same order as preceding non-GLE-related CMEs from the same active region. Hence, the flare itself rather than the CME appears to determine the extreme nature of this event. We conclude that the acceleration, at least, to sub-relativistic energies, of electrons and protons, responsible for both the flare emissions and the leading spike of SEP/GLE by 07 UT, are likely to have occurred simultaneously within the flare region. We do not rule out a probable contribution from particles accelerated in the CME-driven shock for the leading GLE spike, which seemed to dominate later on.
Enhancements of the comic-ray intensity as observed by detectors on the ground have been observed 71 times since 1942. They are due to solar energetic particles accelerated in the regions of solar flares deep in the corona, or in the shock front of c oronal mass ejections (CMEs) in the solar wind. The latter is the favoured model for the classical gradual ground level enhancement (GLE). In several papers since the one of McCracken et al. (2008), we pointed out, however, that some GLEs are too impulsive to be accelerated in the CME shocks. This hypothesis, together with other properties of GLEs, is demonstrated graphically in this paper by plotting and comparing the time profiles of GLEs 42 of 29 September 1989 and GLE 69 of 20 January. These two events are respectively the largest examples of gradual and prompt events.
Previous work showed that total variation superiorization (TVS) improves reconstructed image quality in proton computed tomography (pCT). The structure of the TVS algorithm has evolved since then and this work investigated if this new algorithmic str ucture provides additional benefits to pCT image quality. Structural and parametric changes introduced to the original TVS algorithm included: (1) inclusion or exclusion of TV reduction requirement, (2) a variable number, $N$, of TV perturbation steps per feasibility-seeking iteration, and (3) introduction of a perturbation kernel $0<alpha<1$. The structural change of excluding the TV reduction requirement check tended to have a beneficial effect for $3le Nle 6$ and allows full parallelization of the TVS algorithm. Repeated perturbations per feasibility-seeking iterations reduced total variation (TV) and material dependent standard deviations for $3le Nle 6$. The perturbation kernel $alpha$, equivalent to $alpha=0.5$ in the original TVS algorithm, reduced TV and standard deviations as $alpha$ was increased beyond $alpha=0.5$, but negatively impacted reconstructed relative stopping power (RSP) values for $alpha>0.75$. The reductions in TV and standard deviations allowed feasibility-seeking with a larger relaxation parameter $lambda$ than previously used, without the corresponding increases in standard deviations experienced with the original TVS algorithm. This work demonstrates that the modifications related to the evolution of the original TVS algorithm provide benefits in terms of both pCT image quality and computational efficiency for appropriately chosen parameter values.
On 2005 January 15, the active region AR10720 produced an X1.2 solar flare that induced high levels of seismicity into the photospheric layers. The seismic source was detected using helioseismic holography and analysed in detail in Paper I. Egression power maps at 6 mHz with a 2 mHz bandwidth revealed a compact acoustic source strongly correlated with the footpoints of the coronal loop that hosted the flare. We present a magneto-seismic study of this active region in order to understand, for the first time, the magnetic topological structure of a coronal field that hosts an acoustically active solar flare. The accompanying analysis attempts to answer questions such as: Can the magnetic field act as a barrier and prevent seismic waves from spreading away from the focus of the sunquake? And, what is the most efficient magnetic structure that would facilitate the development of a strong seismic source in the photosphere?
101 - Maxim Lyutikov 2018
Using analytical and numerical methods (fluid and particle-in-cell simulations) we study a number of model problems involving merger of magnetic flux tubes in relativistic magnetically-dominated plasma. Mergers of current-carrying flux tubes (exempli fied by the two dimensional `ABC structures) and zero total current magnetic flux tubes are considered. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration during flux mergers: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. During the X-point collapse particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization $sigma$. For plasma magnetization $sigma leq 10^2$ the spectrum power law index is $p> 2$; in this case the maximal energy depends linearly on the size of the reconnecting islands. For higher magnetization, $sigma geq 10^2$, the spectra are hard, $p< 2$, yet the maximal energy $gamma_{max}$ can still exceed the average magnetic energy per particle, $ sim sigma$, by orders of magnitude (if $p$ is not too close to unity). The X-point collapse stage is followed by magnetic island merger that dissipates a large fraction of the initial magnetic energy in a regime of forced magnetic reconnection, further accelerating the particles, but proceeds at a slower reconnection rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا