ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of magnesium doping on the orbital and magnetic order in LiNiO2

61   0   0.0 ( 0 )
 نشر من قبل Sophie De Brion
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In LiNiO2, the Ni3+ ions, with S=1/2 and twofold orbital degeneracy, are arranged on a trian- gular lattice. Using muon spin relaxation (MuSR) and electron spin resonance (ESR), we show that magnesium doping does not stabilize any magnetic or orbital order, despite the absence of interplane Ni2+. A disordered, slowly fluctuating state develops below 12 K. In addition, we find that magnons are excited on the time scale of the ESR experiment. At the same time, a g factor anisotropy is observed, in agreement with $| 3z^{2}-r^{2}>$ orbital occupancy.

قيم البحث

اقرأ أيضاً

80 - Yuke Li , Xiao Lin , Qian Tao 2009
We report Zn-doping effect in the parent and F-doped LaFeAsO oxy-arsenides. Slight Zn doping in LaFe$_{1-x}$Zn$_{x}$AsO drastically suppresses the resistivity anomaly around 150 K associated with the antiferromagnetic (AFM) spin density wave (SDW) in the parent compound. The measurements of magnetic susceptibility and thermopower confirm further the effect of Zn doping on AFM order. Meanwhile Zn doping does not affect or even enhances the $T_c$ of LaFe$_{1-x}$Zn$_{x}$AsO$_{0.9}$F$_{0.1}$, in contrast to the effect of Zn doping in high-$T_c$ cuprates. We found that the solubility of Zn content ($x$) is limited to less than 0.1 in both systems and further Zn doping (i.e., $x$ $geq$ 0.1) causes phase separation. Our study clearly indicates that the non-magnetic impurity of Zn$^{2+}$ ions doped in the Fe$_2$As$_2$ layers affects selectively the AFM order, and superconductivity remains robust against the Zn doping in the F-doped superconductors.
We investigate signatures of electronic correlations in the narrow-gap semiconductor FeGa$_3$ by means of electrical resistivity and thermodynamic measurements performed on single crystals of FeGa$_3$, Fe$_{1-x}$Mn$_x$Ga$_3$ and FeGa$_{3-y}$Zn$_y$, c omplemented by a study of the 4$d$ analog material RuGa$_3$. We find that the inclusion of sizable amounts of Mn and Zn dopants into FeGa$_3$ does not induce an insulator-to-metal transition. Our study indicates that both substitution of Zn onto the Ga site and replacement of Fe by Mn introduces states into the semiconducting gap that remain localized even at highest doping levels. Most importantly, using neutron powder diffraction measurements, we establish that FeGa$_3$ orders magnetically above room temperature in a complex structure, which is almost unaffected by the doping with Mn and Zn. Using realistic many-body calculations within the framework of dynamical mean field theory (DMFT), we argue that while the iron atoms in FeGa$_3$ are dominantly in an $S=1$ state, there are strong charge and spin fluctuations on short time scales, which are independent of temperature. Further, the low magnitude of local contributions to the spin susceptibility advocates an itinerant mechanism for the spin response in FeGa$_3$. Our joint experimental and theoretical investigations classify FeGa$_3$ as a correlated band insulator with only small dynamical correlation effects, in which non--local exchange interactions are responsible for the spin gap of 0.4 eV and the antiferromagnetic order. We show that hole doping of FeGa$_3$ leads, within DMFT, to a notable strengthening of many--body renormalizations.
We present resistivity, magnetization, and zero field muon spin relaxation ($mu$SR) data for the pyrochlore iridate materials Nd$_{2-x}$Ca$_{x}$Ir$_{2}$O$_{7}$ ($x = 0, 0.06$, and $0.10$) and Sm$_2$Ir$_2$O$_7$. While Nd$_{2}$Ir$_{2}$O$_{7}$ (Nd227) i s weakly conducting, Sm$_{2}$Ir$_{2}$O$_{7}$ (Sm227) has slowly diverging resistivity at low temperature. Nd227 and Sm227 exhibit magnetic anomalies at $T_{M} = 105 K$ and $137 K$, respectively. However, zero-field $mu$SR measurements show that long-range magnetic order of the Ir$^{4+}$ sublattice sets in at much lower temperatures ($T_{LRO} sim 8 K$ for Nd227 and $70 K$ for Sm227); both materials show heavily damped muon precession with a characteristic frequency near 9 MHz. The magnetic anomaly at $T_{M}$ in Nd227 is not significantly affected by the introduction of hole carriers by Ca-substitution in the conducting Nd$_{2-x}$Ca$_{x}$Ir$_{2}$O$_{7}$ samples, but the muon precession is fully suppressed for both.
We develop the cluster self-consistent field method incorporating both electronic and lattice degrees of freedom to study the origin of ferromagnetism in Cs$_{2}$AgF$_{4}$. After self-consistently determining the harmonic and anharmonic Jahn-Teller d istortions, we show that the anharmonic distortion stabilizes the staggered x$^{2}$-z$^{2}$/y$^{2}$-z$^{2}$ orbital and ferromagnetic ground state, rather than the antiferromagnetic one. The amplitudes of lattice distortions, Q$_{2}$ and Q$_{3}$, the magnetic coupling strengthes, J$_{x,y}$, and the magnetic moment, are in good agreement with the experimental observation.
We investigate the magnetic excitations in view of the recent reports suggesting that the spin-wave energy may exhibit a significant dependence on the in-plane strain of a thin film of La$_2$CuO$_4$. The nature of dependence, as we find, can be expla ined naturally within a two-orbital model based on the $d_{x^2-y^2}$ and $d_{3z^2-r^2}$ orbitals. In particular, as the orbital-splitting energy between the $d_{x^2-y^2}$ and $d_{3z^2-r^2}$ orbitals increases with compressive strain, the zone-boundary spin-wave energy hardens. However, the hardening persists only until the orbital splitting reaches $sim$ 2eV, beyond which there is no significant change. The behavior of zone-boundary spin-wave energy is explained in terms of the extent of hybridization between one of the exchange-split $d_{x^2-y^2}$ band which is nearly half filled and the $d_{3z^2-r^2}$ band. The role of second-order antiferromagnetic superexchange process involving the inter-orbital hopping is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا