ﻻ يوجد ملخص باللغة العربية
It was shown recently by Fakcharoenphol et al that arbitrary finite metrics can be embedded into distributions over tree metrics with distortion O(log n). It is also known that this bound is tight since there are expander graphs which cannot be embedded into distributions over trees with better than Omega(log n) distortion. We show that this same lower bound holds for embeddings into distributions over any minor excluded family. Given a family of graphs F which excludes minor M where |M|=k, we explicitly construct a family of graphs with treewidth-(k+1) which cannot be embedded into a distribution over F with better than Omega(log n) distortion. Thus, while these minor excluded families of graphs are more expressive than trees, they do not provide asymptotically better approximations in general. An important corollary of this is that graphs of treewidth-k cannot be embedded into distributions over graphs of treewidth-(k-3) with distortion less than Omega(log n). We also extend a result of Alon et al by showing that for any k, planar graphs cannot be embedded into distributions over treewidth-k graphs with better than Omega(log n) distortion.
We study the space complexity of sketching cuts and Laplacian quadratic forms of graphs. We show that any data structure which approximately stores the sizes of all cuts in an undirected graph on $n$ vertices up to a $1+epsilon$ error must use $Omega
We present new lower bounds that show that a polynomial number of passes are necessary for solving some fundamental graph problems in the streaming model of computation. For instance, we show that any streaming algorithm that finds a weighted minimum
Classic dynamic data structure problems maintain a data structure subject to a sequence S of updates and they answer queries using the latest version of the data structure, i.e., the data structure after processing the whole sequence. To handle opera
We consider the problem of testing graph cluster structure: given access to a graph $G=(V, E)$, can we quickly determine whether the graph can be partitioned into a few clusters with good inner conductance, or is far from any such graph? This is a ge
We give lower bounds on the performance of two of the most popular sampling methods in practice, the Metropolis-adjusted Langevin algorithm (MALA) and multi-step Hamiltonian Monte Carlo (HMC) with a leapfrog integrator, when applied to well-condition