ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Consequences of the S-wave $cos(k_x) cdot cos(k_y)$ Superconductivity in the Iron-Pnictides

167   0   0.0 ( 0 )
 نشر من قبل B. A. Bernevig
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The experimental consequences of different order parameters in iron-based superconductors are theoretically analyzed. We consider both nodeless and nodal order parameters, with an emphasis on the $cos(k_x)cdot cos(k_y)$ nodeless order parameter recently derived by two of us. We analyze the effect of this order parameter on the spectral function, density of states, tunneling differential conductance, penetration depth, and the NMR spin relaxation time. This extended s-wave symmetry has line-zeroes in between the electron and hole pockets, but they do not intersect the two Fermi surfaces for moderate doping, and the superconductor is fully gapped. However, this suggests several quantitative tests: the exponential decay of the penetration depth weakens and the density of states reveals a smaller gap upon electron or hole doping. Moreover, the $cos(k_x) cdot cos(k_y)$ superconducting gap is largest on the smallest (hole) Fermi surface. For the $1/T_1$ NMR spin relaxation rate, the inter-band contribution is consistent with the current experimental results, including a (non-universal) $T^{3}$ behavior and the absence of a coherence peak. However, the intra-band contribution is considerably larger than the inter-band contributions and still exhibits a small enhancement in the NMR spin relaxation rate right below $T_c$ in the clean limit.



قيم البحث

اقرأ أيضاً

We propose a trilayer $pi$-junction that takes advantage of the unconventional $s_{x^2 y^2}=cos k_x cos k_y$ pairing symmetry which changes sign between electron and hole Fermi pockets in the iron pnictides. In addition, we also present theoretical r esults for Andreev bound states in thin superconductor-normal metal (or insulator) iron-pnictide junctions. The presence of nontrivial in-gap states, which uniquely appear in this unconventional pairing state, is a distinct feature in comparison to other singlet pairing states.
147 - D. Hsieh , Y. Xia , L. Wray 2008
Like high Tc cuprates, the newly discovered iron based superconductors lie in close proximity to a magnetically ordered parent phase. However, while the magnetic order in parent cuprates is known to derive from a spin-spin local superexchange interac tion, a plethora of experiments including neutron scattering have so far been unable to conclusively resolve whether a local moment Heisenberg description applies in parent iron based compounds, or whether magnetism arises from a collective SDW order instability. These two alternatives can in principle be distinguished by measuring the low energy momentum-resolved bulk-representative electronic structure of the magnetically ordered phase. Using a combination of polarization dependent ARPES and STM, we have isolated the complete low-lying bulk representative electronic structure of magnetic SrFe2As2 with d-orbital symmetry specificity for the first time. Our results show that while multiple bands with different iron d-orbital character indeed contribute to charge transport, only one pair of bands with opposite mirror symmetries microscopically exhibit an itinerant SDW instability with energy scales on the order of 50 meV. The orbital resolved band topology below T_SDW point uniquely to a nesting driven band hybridization mechanism of the observed antiferromagnetism in the iron pnictides, and is consistent with an unusual anisotropic nodal-density-wave state. In addition, these results place strong constraints on many theories of pnictide superconductivity that require a strict local moment magnetism starting point.
We investigate the electronic state and the superconductivity in the 5-orbital Hubbard model for iron pnictides by using the dynamical mean-field theory in conjunction with the Eliashberg equation. The renormalization factor exhibits significant orbi tal dependence resulting in the large change in the band dispersion as observed in recent ARPES experiments. The critical interactions towards the magnetic, orbital and superconducting instabilities are suppressed as compared with those from the random phase approximation (RPA) due to local correlation effects. Remarkably, the s++-pairing phase due to the orbital fluctuation is largely expanded relative to the RPA result, while the s+--pairing phase due to the magnetic fluctuation is reduced.
The possibility of p-wave pairing in superconductors has been proposed more than five decades ago, but has not yet been convincingly demonstrated. One difficulty is that some p-wave states are thermodynamically indistinguishable from s-wave, while ot hers are very similar to d-wave states. Here we studied the self-field critical current of NdFeAs(O,F) thin films in order to extract absolute values of the London penetration depth, the superconducting energy gap, and the relative jump in specific heat at the superconducting transition temperature, and find that all the deduced physical parameters strongly indicate that NdFeAs(O,F) is a bulk p-wave superconductor. Further investigation revealed that single atomic layer FeSe also shows p-wave pairing. In an attempt to generalize these findings, we re-examined the whole inventory of superfluid density measurements in iron-based superconductors show quite generally that most of the iron-based superconductors are p-wave superconductors.
140 - Y. J. Yan , A. F. Wang , X. G. Luo 2013
We report Hall measurement of the normal state in K- and Co-doped BaFe$_2$As$_2$, as well NaFe$_{1-x}$Co$_x$As. We found that a power-law temperature dependence of Hall angle, cot$theta_{rm H}$$propto$ $T^beta$, prevails in normal state with temperat ure range well above the structural, spin-density-wave and superconducting transitions for the all samples with various doping levels. The power $beta$ is nearly 4 for the parent compounds and the heavily underdoped samples, while around 3 for the superconducting samples. The $beta$ suddenly changes from 4 to 3 at a doping level that is close to the emergence of superconductivity. It suggests that the $beta$ of $sim 3$ is clearly tied to the superconductivity. Our data suggest that, similar to cuprates, there exists a connection between the physics in the normal state and superconductivity of iron-pnictides. These findings shed light on the mechanism of high-temperature superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا