ترغب بنشر مسار تعليمي؟ اضغط هنا

Paris nucleon-antinucleon potential constrained by recent antiprotonic-atom data and antineutron-proton total cross sections

82   0   0.0 ( 0 )
 نشر من قبل Loiseau Benoit
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on an updated Paris nucleon-antinucleon optical potential. The long- and intermediate-range real parts are obtained by G-parity transformation of the Paris nucleon-nucleon potential based on a theoretical dispersion-relation treatment of the correlated and uncorrelated two-pion exchange. The short-range imaginary potential parametrization results from the calculation of the nucleon-antinucleon annihilation box diagram into two mesons with a nucleon-antinucleon intermediate state in the crossed channel. The parametrized real and imaginary short range parts are determined by fitting not only the existing experimental data included in the 1999 version of the Paris nucleon-antinucleon potential, but also the recent antiprotonic-hydrogen data and antineutron-proton total cross sections. The description of these new observables is improved. Only this readjusted potential generates an isospin zero 1S0, 52 MeV broad quasibound state at 4.8 MeV below the threshold. Recent BES data on J/psi decays could support the existence of such a state.

قيم البحث

اقرأ أيضاً

60 - K. Amos , P. K. Deb 2002
A simple functional form has been found that gives a good representation of the total reaction cross sections for the scattering of protons from (15) nuclei spanning the mass range ${}^{9}$Be to ${}^{238}$U and for proton energies ranging from 20 to 300 MeV.
114 - S. Majumdar , P. K. Deb , 2001
A simple functional form has been found that gives a good representation of the total reaction cross sections for the scattering from ${}^{208}$Pb of protons with energies in the range 30 to 300 MeV.
Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross- sections for neutron scattering from $^{16}$O and $^{40}$Ca are calculated as a function of energy from $50-700$~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.
Based on the requirement in the simulation of lepton-nucleus deep inelastic scattering (DIS), we construct a fortran program LDCS 1.0 calculating the differential and total cross sections for the unpolarized charged lepton-unpolarized nucleon and neu trino-unpolarized nucleon neutral current (charged current) DIS at leading order. Any set of the experimentally fitted parton distribution functions could be employed directly. The mass of incident and scattered leptons is taken into account and the boundary conditions calculating the single differential and total cross section are studied. The calculated results well agree with the corresponding experimental data which indicating the LDCS 1.0 program is good. It is also turned out that the effect of tauon mass is not negligible in the GeV energy level.
The two-pion production in pp-collisions has been investigated at CELSIUS in exclusive measurements from threshold up to $T_p$ = 1.36 GeV. Total and differential cross sections have been obtained for the channels $pnpi^+pi^0$, $pppi^+pi^-$, $pppi^0pi ^0$ and also $nnpi^+pi^+$. For intermediate incident energies $T_p >$ 1 GeV, i.e. in the region which is beyond the Roper excitation but at the onset of $DeltaDelta$ excitation, the total $pppi^0pi^0$ cross section falls behind theoretical predictions by as much as an order of magnitude near 1.2 GeV, whereas the $nnpi^+pi^+$ cross section is a factor of five larger than predicted. An isospin decompostion of the total cross sections exhibits a s-channel-like energy dependence in the region of the Roper excitation as well as a significant contribution of an isospin 3/2 resonance other than the $Delta(1232)$. As possible candidates the $Delta(1600)$ and the $Delta(1700)$ are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا