ﻻ يوجد ملخص باللغة العربية
We have studied Ni-substitution effect in LaFe$_{1-x}$Ni$_{x}$AsO ($0leq x leq0.1$) by the measurements of x-ray diffraction, electrical resistivity, magnetic susceptibility, and heat capacity. The nickel doping drastically suppresses the resistivity anomaly associated with spin-density-wave ordering in the parent compound. Superconductivity emerges in a narrow region of $0.03leq x leq0.06$ with the maximum $T_c$ of 6.5 K at $x$=0.04, where enhanced magnetic susceptibility shows up. The upper critical field at zero temperature is estimated to exceed the Pauli paramagnetic limit. The much lowered $T_c$ in comparison with LaFeAsO$_{1-x}$F$_{x}$ system is discussed.
Here we report the synthesis and basic characterization of LaFe1-xCoxAsO for several values of x. The parent phase LaFeAsO orders antiferromagnetically (TN ~ 145 K). Replacing Fe with Co is expected to both electron dope the system and introduce diso
Results of resistivity, Hall effect, magnetoresistance, susceptibility and heat capacity measurements are presented for single crystals of indium-doped tin telluride with compositions Sn$_{.988-x}$In$_x$Te where $0 leq x leq 8.4 %$, along with micros
Because the cuprate superconductors are doped Mott insulators, it would be advantageous to solve even a toy model that exhibits both Mottness and superconductivity. We consider the Hatsugai-Kohmoto model, an exactly solvable system that is a prototyp
Inelastic neutron scattering measurements on Ba(Fe$_{0.963}$Ni$_{0.037}$)$_2$As$_2$ manifest a neutron spin resonance in the superconducting state with anisotropic dispersion within the Fe layer. Whereas the resonance is sharply peaked at Q$_{AFM}$ a
Superconductivity with $T_c approx 15K$ was recently found in doped NdNiO$_2$. The Ni$^{1+}$O$_2$ layers are expected to be Mott insulators so hole doping should produce Ni$^{2+}$ with $S=1$, incompatible with robust superconductivity. We show that t