ترغب بنشر مسار تعليمي؟ اضغط هنا

Blackbox computation of $A_infty$-algebras

128   0   0.0 ( 0 )
 نشر من قبل Mikael Vejdemo-Johansson
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Kadeishvilis proof of the minimality theorem induces an algorithm for the inductive computation of an $A_infty$-algebra structure on the homology of a dg-algebra. In this paper, we prove that for one class of dg-algebras, the resulting computation will generate a complete $A_infty$-algebra structure after a finite amount of computational work.



قيم البحث

اقرأ أيضاً

We prove a version of Koszul duality and the induced derived equivalence for Adams connected $A_infty$-algebras that generalizes the classical Beilinson-Ginzburg-Soergel Koszul duality. As an immediate consequence, we give a version of the Bernv{s}te {ui}n-Gelfand-Gelfand correspondence for Adams connected $A_infty$-algebras. We give various applications. For example, a connected graded algebra $A$ is Artin-Schelter regular if and only if its Ext-algebra $Ext^ast_A(k,k)$ is Frobenius. This generalizes a result of Smith in the Koszul case. If $A$ is Koszul and if both $A$ and its Koszul dual $A^!$ are noetherian satisfying a polynomial identity, then $A$ is Gorenstein if and only if $A^!$ is. The last statement implies that a certain Calabi-Yau property is preserved under Koszul duality.
In the paper, a method of describing the outer derivations of the group algebra of a finitely presentable group is given. The description of derivations is given in terms of characters of the groupoid of the adjoint action of the group.
Let $k$ be an algebraically closed field of characteristic different from 2. Up to isomorphism, the algebra $operatorname{Mat}_{n times n}(k)$ can be endowed with a $k$-linear involution in one way if $n$ is odd and in two ways if $n$ is even. In t his paper, we consider $r$-tuples $A_bullet in operatorname{Mat}_{ntimes n}(k)^r$ such that the entries of $A_bullet$ fail to generate $operatorname{Mat}_{ntimes n}(k)$ as an algebra with involution. We show that the locus of such $r$-tuples forms a closed subvariety $Z(r;V)$ of $operatorname{Mat}_{ntimes n}(k)^r$ that is not irreducible. We describe the irreducible components and we calculate the dimension of the largest component of $Z(r;V)$ in all cases. This gives a numerical answer to the question of how generic it is for an $r$-tuple $(a_1, dots, a_r)$ of elements in $operatorname{Mat}_{ntimes n}(k)$ to generate it as an algebra with involution.
Suppose k is a field of characteristic 2, and $n,mgeq 4$ powers of 2. Then the $A_infty$-structure of the group cohomology algebras $H^*(C_n,k)$ and $(H^*(C_m,k)$ are well known. We give results characterizing an $A_infty$-structure on $H^*(C_ntimes C_m,k)$ including limits on non-vanishing low-arity operations and an infinite family of non-vanishing higher operations.
We show that the tensor product of two cyclic $A_infty$-algebras is, in general, not a cyclic $A_infty$-algebra, but an $A_infty$-algebra with homotopy inner product. More precisely, we construct an explicit combinatorial diagonal on the pairahedra, which are contractible polytopes controlling the combinatorial structure of an $A_infty$-algebra with homotopy inner products, and use it to define a categorically closed tensor product. A cyclic $A_infty$-algebra can be thought of as an $A_infty$-algebra with homotopy inner products whose higher inner products are trivial. However, the higher inner products on the tensor product of cyclic $A_infty$-algebras are not necessarily trivial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا