ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass and Magnetic Moments of the Heavy Flavored Baryons with $J=3/2$ in Light Cone QCD Sum Rules

111   0   0.0 ( 0 )
 نشر من قبل Kazem Azizi
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Inspired by the results of recent experimental discoveries for charm and bottom baryons, the masses and magnetic moments of the heavy baryons with $J^P=3/2^+$ containing a single heavy quark are studied within light cone QCD sum rules method. Our results on the masses of heavy baryons are in good agreement with predictions of other approaches, as well as with the existing experimental values. Our predictions on the masses of the states, which are not yet discovered in the experiments, can be tested in the future experiments. A comparison of our results on the magnetic moments of these baryons and the hyper central model predictions is presented.



قيم البحث

اقرأ أيضاً

The magnetic moments of heavy sextet $J^P = {1over 2}^+$ baryons are calculated in framework of the light cone QCD sum rules method. Linearly independent relations among the magnetic moments of these baryons are obtained. The results for the magnetic moments of heavy baryons obtained in this work are compared with the predictions of the other approaches.
The magnetic moments of heavy $Xi_{Q}$ baryons containing a single charm or bottom quark are calculated in the framework of light cone QCD sum rules method. A comparison of our results with the predictions of the quark models is presented.
Motivated by the results of the recent experimental discoveries for charm and bottom baryons, the masses and magnetic moments of the heavy baryons with $J^P=3/2^+$ containing a single heavy quark are studied within light cone QCD sum rules method. Ou r results on the masses of heavy baryons are in good agreement with predictions of other approaches, as well as with the existing experimental data.
We derive QCD light-cone sum rules for the hadronic matrix elements of the heavy baryon transitions to nucleon. In the correlation functions the $Lambda_c,Sigma_c$ and $Lambda_b$ -baryons are interpolated by three-quark currents and the nucleon distr ibution amplitudes are used. To eliminate the contributions of negative parity heavy baryons, we combine the sum rules obtained from different kinematical structures. The results are then less sensitive to the choice of the interpolating current. We predict the $Lambda_{b}to p$ form factor and calculate the widths of the $Lambda_{b}to pell u_l$ and $Lambda_{b}to p pi$ decays. Furthermore, we consider double dispersion relations for the same correlation functions and derive the light-cone sum rules for the $Lambda_cND^{(*)}$ and $Sigma_cND^{(*)}$ strong couplings. Their predicted values can be used in the models of charm production in $pbar{p}$ collisions.
134 - T. M. Aliev 2015
Diagonal and transition magnetic moments of the negative parity, spin-1/2 heavy baryons are studied in framework of the light cone QCD sum rules. By constructing the sum rules for different Lorentz structures, the unwanted contributions coming from n egative (positive) to positive (negative) parity transitions are removed. It is obtained that the magnetic moments of all baryons, except $Lambda_b^0$, $Sigma_c^+$ and $Xi_c^{prime +}$, are quite large. It is also found that the transition magnetic moments between neutral negative parity heavy $Xi_Q^{prime 0}$ and $Xi_Q^0$ baryons are very small. Magnetic moments of the $Sigma_Q to Lambda_Q$ and $ Xi_Q^{prime pm} to Xi_Q^pm$ transitions are quite large and can be measured in further experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا