ﻻ يوجد ملخص باللغة العربية
For an arbitrary possibly non-Hermitian matrix Hamiltonian H, that might involve exceptional points, we construct an appropriate parameter space M and the lines bundle L^n over M such that the adiabatic geometric phases associated with the eigenstates of the initial Hamiltonian coincide with the holonomies of L^n. We examine the case of 2 x 2 matrix Hamiltonians in detail and show that, contrary to claims made in some recent publications, geometric phases arising from encircling exceptional points are generally geometrical and not topological in nature.
The counterpart of the rotating wave approximation for non-Hermitian Hamiltonians is considered, which allows for the derivation of a suitable effective Hamiltonian for systems with some states undergoing decays. In the limit of very high decay rates
We show that the definition of instantaneous eigenstate populations for a dynamical non-self-adjoint system is not obvious. The naive direct extension of the definition used for the self-adjoint case leads to inconsistencies; the resulting artifacts
We consider the description of open quantum systems with probability sinks (or sources) in terms of general non-Hermitian Hamiltonians.~Within such a framework, we study novel possible definitions of the quantum linear entropy as an indicator of the
The relationship between quantum phase transition and complex geometric phase for open quantum system governed by the non-Hermitian effective Hamiltonian with the accidental crossing of the eigenvalues is established. In particular, the geometric pha
The resolvent of supersymmetric Dirac Hamiltonian is studied in detail. Due to supersymmetry the squared Dirac Hamiltonian becomes block-diagonal whose elements are in essence non-relativistic Schrodinger-type Hamiltonians. This enables us to find a