ترغب بنشر مسار تعليمي؟ اضغط هنا

A possible mechanism for self coordination of bi-directional traffic across nuclear pores

97   0   0.0 ( 0 )
 نشر من قبل Ruti Kapon
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nuclear pore complexes are constantly confronted by large fluxes of macromolecules and macromolecular complexes that need to get into and out of the nucleus. Such bi-directional traffic occurring in a narrow channel can easily lead to jamming. How then is passage between the nucleus and cytoplasm maintained under the varying conditions that arise during the lifetime of the cell? Here, we address this question using computer simulations in which the behaviour of the ensemble of transporting cargoes is analyzed under different conditions. We suggest that traffic can exist in two distinct modes, depending on concentration of cargoes and dissociation rates of the transport receptor-cargo complexes from the pores. In one mode, which prevails when dissociation is quick and cargo concentration is low, transport in either direction proceeds uninterrupted by the other direction. The result is that overall-traffic-direction fluctuates rapidly and unsystematically between import and export. Remarkably, when cargo concentrations are high and dissociation is slow, another mode takes over in which traffic proceeds in one direction for a certain extent of time, after which it flips direction for another period. The switch between this, more regulated, mode of transport and the other, quickly fluctuating state, does not require an active gating mechanism but rather occurs spontaneously through the dynamics of the transported particles themselves. The determining factor for the behaviour of traffic is found to be the exit rate from the pore channel, which is directly related to the activity of the Ran system that controls the loading and release of cargo in the appropriate cellular compartment.

قيم البحث

اقرأ أيضاً

Mechanical loading generally weakens adhesive structures and eventually leads to their rupture. However, biological systems can adapt to loads by strengthening adhesions, which is essential for maintaining the integrity of tissue and whole organisms. Inspired by cellular focal adhesions, we suggest here a generic, molecular mechanism that allows adhesion systems to harness applied loads for self-stabilization under non-equilibrium conditions -- without any active feedback involved. The mechanism is based on conformation changes of adhesion molecules that are dynamically exchanged with a reservoir. Tangential loading drives the occupation of some stretched conformation states out of equilibrium, which, for thermodynamic reasons, leads to association of further molecules with the adhesion cluster. Self-stabilization robustly increases adhesion lifetimes in broad parameter ranges. Unlike for catch-bonds, bond dissociation rates do not decrease with force. The self-stabilization principle can be realized in many ways in complex adhesion-state networks; we show how it naturally occurs in cellular adhesions involving the adaptor proteins talin and vinculin.
78 - Soumendu Ghosh 2018
Several important biological processes are initiated by the binding of a protein to a specific site on the DNA. The strategy adopted by a protein, called transcription factor (TF), for searching its specific binding site on the DNA has been investiga ted over several decades. In recent times the effects obstacles, like DNA-binding proteins, on the search by TF has begun to receive attention. RNA polymerase (RNAP) motors collectively move along a segment of the DNA during a genomic process called transcription. This RNAP traffic is bound to affect the diffusive scanning of the same segment of the DNA by a TF searching for its binding site. Motivated by this phenomenon, here we develop a kinetic model where a `particle, that represents a TF, searches for a specific site on a one-dimensional lattice. On the same lattice another species of particles, each representing a RNAP, hop from left to right exactly as in a totally asymmetric simple exclusion process (TASEP) which forbids simultaneous occupation of any site by more than one particle, irrespective of their identities. Although the TF is allowed to attach to or detach from any lattice site, the RNAPs can attach only to the first site at the left edge and detach from only the last site on the right edge of the lattice. We formulate the search as a {it first-passage} process; the time taken to reach the target site {it for the first time}, starting from a well defined initial state, is the search time. By approximate analytical calculations and Monte Carlo (MC) computer simulations, we calculate the mean search time. We show that RNAP traffic rectifies the diffusive motion of TF to that of a Brownian ratchet, and the mean time of successful search can be even shorter than that required in the absence of RNAP traffic. Moreover, we show that there is an optimal rate of detachment that corresponds to the shortest mean search time.
We study a simple swarming model on a two-dimensional lattice where the self-propelled particles exhibit a tendency to align ferromagnetically. Volume exclusion effects are present: particles can only hop to a neighboring node if the node is empty. H ere we show that such effects lead to a surprisingly rich variety of self-organized spatial patterns. As particles exhibit an increasingly higher tendency to align to neighbors, they first self-segregate into disordered particle aggregates. Aggregates turn into traffic jams. Traffic jams evolve toward gliders, triangular high density regions that migrate in a well-defined direction. Maximum order is achieved by the formation of elongated high density regions - bands - that transverse the entire system. Numerical evidence suggests that below the percolation density the phase transition associated to orientational order is of first-order, while at full occupancy it is of second-order. The model highlights the (pattern formation) importance of a coupling between local density, orientation, and local speed.
Flagella of eukaryotic cells are transient long cylindrical protrusions. The proteins needed to form and maintain flagella are synthesized in the cell body and transported to the distal tips. What `rulers or `timers a specific type of cells use to st rike a balance between the outward and inward transport of materials so as to maintain a particular length of its flagella in the steady state is one of the open questions in cellular self-organization. Even more curious is how the two flagella of biflagellates, like Chlamydomonas Reinhardtii, communicate through their base to coordinate their lengths. In this paper we develop a stochastic model for flagellar length control based on a time-of-flight (ToF) mechanism. This ToF mechanism decides whether or not structural proteins are to be loaded onto an intraflagellar transport (IFT) train just before it begins its motorized journey from the base to the tip of the flagellum. Because of the ongoing turnover, the structural proteins released from the flagellar tip are transported back to the cell body also by IFT trains. We represent the traffic of IFT trains as a totally asymmetric simple exclusion process (TASEP). The ToF mechanism for each flagellum, together with the TASEP-based description of the IFT trains, combined with a scenario of sharing of a common pool of flagellar structural proteins in biflagellates, can account for all key features of experimentally known phenomena. These include ciliogenesis, resorption, deflagellation as well as regeneration after selective amputation of one of the two flagella. We also show that the experimental observations of Ishikawa and Marshall are consistent with the ToF mechanism of length control if the effects of the mutual exclusion of the IFT trains captured by the TASEP are taken into account. Moreover, we make new predictions on the flagellar length fluctuations and the role of the common pool.
Contact inhibition is the process by which cells switch from a motile growing state to a passive and stabilized state upon touching their neighbors. When two cells touch, an adhesion link is created between them by means of transmembrane E-cadherin p roteins. Simultaneously, their actin filaments stop polymerizing in the direction perpendicular to the membrane and reorganize to create an apical belt that colocalizes with the adhesion links. Here, we propose a detailed quantitative model of the role of the cytoplasmic $beta$-catenin and $alpha$-catenin proteins in this process, treated as a reaction-diffusion system. Upon cell-cell contact, the concentration in $alpha$-catenin dimers increases, inhibiting actin branching and thereby reducing cellular motility and expansion pressure. This model provides a mechanism for contact inhibition that could explain previously unrelated experimental findings on the role played by E-cadherin, $beta$-catenin and $alpha$-catenin in the cellular phenotype and in tumorigenesis. In particular, we address the effect of a knockout of the adenomatous polyposis coli tumor suppressor gene. Potential direct tests of our model are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا