ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexistence of two order parameters and a pseudogaplike feature in the iron-based superconductor LaFeAsO_(1-x)F_x

461   0   0.0 ( 0 )
 نشر من قبل R. S. Gonnelli
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature and value of the order parameters (OPs) in the superconducting Fe-based oxypnictides REFeAsO_(1-x)F_x (RE = rare earth) are a matter of intense debate, also connected to the pairing mechanism which is probably unconventional. Point-contact Andreev-reflection experiments on LaFeAsO_(1-x)F_x gave us direct evidence of three energy scales in the superconducting state: a nodeless superconducting OP, Delta1 = 2.8-4.6 meV, which scales with the local Tc of the contact; a larger unconventional OP that gives conductance peaks at 9.8-12 meV, apparently closes below Tc and decreases on increasing the Tc of the contact; a pseudogaplike feature (i.e. a depression in the conductance around zero bias), that survives in the normal state up to T* ~ 140 K (close to the Neel temperature of the undoped compound), which we associate to antiferromagnetic spin fluctuations (AF SF) coexisting with superconductivity. These findings point toward a complex, unconventional nature of superconductivity in LaFeAsO_(1-x)F_x.



قيم البحث

اقرأ أيضاً

A puzzle in the iron-based superconductor LaFeAsO_{1-x}F_x is that the magnetic moment obtained by first-principle electronic structure calculations is unexpectedly much larger than the experimentally observed one. For example, the calculated value i s ~ 2.0 mu_B in the mother compound, while it is ~ 0.3 mu_B in experiments. We find that the puzzle is solved within the framework LDA + U by expanding the U value into a slightly negative range. We show U dependence of the obtained magnetic moment in both the undoped x=0.0 and doped x = 0.125. These results reveal that the magnetic moment is drastically reduced when entering to the slightly negative range of U. Moreover, the negative U well explains other measurement data, e.g., lattice constants and electronic DOS at the Fermi level. We discuss possible origins of the negative U in these compounds.
We argue that the newly discovered superconductivity in a nearly magnetic, Fe-based layered compound is unconventional and mediated by antiferromagnetic spin fluctuations, though different from the usual superexchange and specific to this compound. T his resulting state is an example of extended s-wave pairing with a sign reversal of the order parameter between different Fermi surface sheets. The main role of doping in this scenario is to lower the density of states and suppress the pair-breaking ferromagnetic fluctuations.
The magnetic properties attributed to the hydroxide layer of Li1-xFex(OH)Fe1-ySe have been elucidated by the study of superconducting and nonsuperconducting members of this family. Both ac magnetometry and muon spin relaxation measurements of nonsupe rconductors find a magnetic state existing below approximately 10 K which exhibits slow relaxation of magnetization. This magnetic state is accompanied by a low-temperature heat capacity anomaly present in both superconducting and nonsuperconducting variants suggesting that the magnetism persists into the superconducting state. The estimated value of magnetic moment present within the hydroxide layer supports a picture of a glassy magnetic state, probably comprising clusters of iron ions of varying cluster sizes distributed within the lithium hydroxide layer.
264 - Z. W. Zhu , Z. A. Xu , X. Lin 2008
We report the first Nernst effect measurement on the new iron-based superconductor LaO$_{1-x}$F$_{x}$FeAs $(x=0.1)$. In the normal state, the Nernst signal is negative and very small. Below $T_{c}$ a large positive peak caused by vortex motion is obs erved. The flux flowing regime is quite large compared to conventional type-II superconductors. However, a clear deviation of the Nernst signal from normal state background and an anomalous depression of off-diagonal thermoelectric current in the normal state between $T_{c}$ and 50 K are observed. We propose that this anomaly in the normal state Nernst effect could correlate with the SDW fluctuations.
Magnetically mediated Cooper pairing is generally regarded as a key to establish the unified mechanism of unconventional superconductivity. One crucial evidence is the neutron spin resonance arising in the superconducting state, which is commonly int erpreted as a spin-exciton from collective particle-hole excitations confined below the superconducting pair-breaking gap ($2Delta$). Here, on the basis of inelastic neutron scattering measurements on a quasi-two-dimensional iron-based superconductor KCa$_2$Fe$_4$As$_4$F$_2$, we have discovered a two-dimensional spin resonant mode with downward dispersions, a behavior closely resembling the low branch of the hour-glass-type spin resonance in cuprates. The resonant intensity is predominant by two broad incommensurate peaks near $Q=$(0.5, 0.5) with a sharp energy peak at $E_R=16$ meV. The overall energy dispersion of the mode exceeds the measured maximum total gap $Delta_{rm tot}=|Delta_k|+|Delta_{k+Q}|$. These experimental results deeply challenge the conventional understanding of the resonance modes as magnetic excitons regardless of underlining pairing symmetry schemes, and it also points out that when the iron-based superconductivity becomes very quasi-two-dimensional, the electronic behaviors are similar to those in cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا