ترغب بنشر مسار تعليمي؟ اضغط هنا

Closed String TCFT for Hermitian Calabi-Yau Elliptic Spaces

221   0   0.0 ( 0 )
 نشر من قبل Thomas Tradler
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe an explicit action of the prop of the chains on the moduli space of Riemann surfaces on the Hochschild complex of a Calabi-Yau elliptic space. One example of such an elliptic space extends the known string topology operations, for all compact simply-connected manifolds, to a collection indexed by the de Rham currents on the moduli space. Another example pertains to the B-model at all genera.



قيم البحث

اقرأ أيضاً

We present the most complete list of mirror pairs of Calabi-Yau complete intersections in toric ambient varieties and develop the methods to solve the topological string and to calculate higher genus amplitudes on these compact Calabi-Yau spaces. The se symplectic invariants are used to remove redundancies in examples. The construction of the B-model propagators leads to compatibility conditions, which constrain multi-parameter mirror maps. For K3 fibered Calabi-Yau spaces without reducible fibers we find closed formulas for all genus contributions in the fiber direction from the geometry of the fibration. If the heterotic dual to this geometry is known, the higher genus invariants can be identified with the degeneracies of BPS states contributing to gravitational threshold corrections and all genus checks on string duality in the perturbative regime are accomplished. We find, however, that the BPS degeneracies do not uniquely fix the non-perturbative completion of the heterotic string. For these geometries we can write the topological partition function in terms of the Donaldson-Thomas invariants and we perform a non-trivial check of S-duality in topological strings. We further investigate transitions via collapsing D5 del Pezzo surfaces and the occurrence of free Z2 quotients that lead to a new class of heterotic duals.
391 - L.-Y. Liu , S.-Q. Wang , Q.-S. Wu 2012
Suppose that $E=A[x;sigma,delta]$ is an Ore extension with $sigma$ an automorphism. It is proved that if $A$ is twisted Calabi-Yau of dimension $d$, then $E$ is twisted Calabi-Yau of dimension $d+1$. The relation between their Nakayama automorphisms is also studied. As an application, the Nakayama automorphisms of a class of 5-dimensional Artin-Schelter regular algebras are given explicitly.
191 - Piotr Su{l}kowski 2007
This thesis is concerned with a realisation of topological theories in terms of statistical models known as Calabi-Yau crystals. The thesis starts with an introduction and review of topological field and string theories. Subsequently several new resu lts are presented. The main focus of the thesis is on the topological string theory. In this case crystal models correspond to three-dimensional partitions and their relations with the topological vertex theory and knot invariants are studied. Two-dimensional crystal models corresponding to topological gauge theories on ALE spaces are also introduced and analysed. Essential mathematical tools are summarised in appendices.
157 - J.D.S. Jones , J. McCleary 2014
Let $M$ be a closed simply connected smooth manifold. Let $F_p$ be the finite field with $p$ elements where $p> 0$ is a prime integer. Suppose that $M$ is an $F_p$-elliptic space in the sense of [FHT91]. We prove that if the cohomology algebra $H^*(M , F_p)$ cannot be generated (as an algebra) by one element, then any Riemannian metric on $M$ has an infinite number of geometrically distinct closed geodesics. The starting point is a classical theorem of Gromoll and Meyer [GM69]. The proof uses string homology, in particular the spectral sequence of [CJY04], the main theorem of [McC87], and the structure theorem for elliptic Hopf algebras over $F_p$ from [FHT91].
We study the geometry of the scalar manifolds emerging in the no-scale sector of Kahler moduli and matter fields in generic Calabi-Yau string compactifications, and describe its implications on scalar masses. We consider both heterotic and orientifol d models and compare their characteristics. We start from a general formula for the Kahler potential as a function of the topological compactification data and study the structure of the curvature tensor. We then determine the conditions for the space to be symmetric and show that whenever this is the case the heterotic and the orientifold models give the same scalar manifold. We finally study the structure of scalar masses in this type of geometries, assuming that a generic superpotential triggers spontaneous supersymmetry breaking. We show in particular that their behavior crucially depends on the parameters controlling the departure of the geometry from the coset situation. We first investigate the average sGoldstino mass in the hidden sector and its sign, and study the implications on vacuum metastability and the mass of the lightest scalar. We next examine the soft scalar masses in the visible sector and their flavor structure, and study the possibility of realizing a mild form of sequestering relying on a global symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا