ﻻ يوجد ملخص باللغة العربية
Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -ell^{-2} and positive Newton constant G admits an AdS_3 vacuum solution for any value of the graviton mass mu. These are all known to be perturbatively unstable except at the recently explored chiral point muell=1. However we show herein that for every value of muell< 3 there are two other (potentially stable) vacuum solutions given by SL(2,R)x U(1)-invariant warped AdS_3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at muell=3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For muell>3, there are known warped black hole solutions which are asymptotic to warped AdS_3. We show that these black holes are discrete quotients of warped AdS_3 just as BTZ black holes are discrete quotients of ordinary AdS_3. Moreover new solutions of this type, relevant to any theory with warped AdS_3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for muell>3, the warped AdS_3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R={15(muell)^2+81over Gmu((muell)^2+27)} and c_L={12 muell^2over G((muell)^2+27)}.
We study the Complexity=Volume conjecture for Warped AdS$_3$ black holes. We compute the spatial volume of the Einstein-Rosen bridge and we find that its growth rate is proportional to the Hawking temperature times the Bekenstein-Hawking entropy. Thi
The Complexity=Action conjecture is studied for black holes in Warped AdS$_3$ space, realized as solutions of Einstein gravity plus matter. The time dependence of the action of the Wheeler-DeWitt patch is investigated, both for the non-rotating and t
We reconsider warped black hole solutions in topologically massive gravity and find novel boundary conditions that allow for soft hairy excitations on the horizon. To compute the associated symmetry algebra we develop a general framework to compute a
We propose a set of diffeomorphism that act non-trivially near the horizon of the Kerr black hole. We follow the recent developments of Haco-Hawking-Perry-Strominger to quantify this phase space, with the most substantial difference being our choice
We propose a correspondence between an Anyon Van der Waals fluid and a (2+1) dimensional AdS black hole. Anyons are particles with intermediate statistics that interpolates between a Fermi-Dirac statistics and a Bose-Einstein one. A parameter $alpha$