ﻻ يوجد ملخص باللغة العربية
A detailed study is presented of the counterrotating model (CRM) for generic electrovacuum static axially symmetric relativistic thin disks without radial pressure. We find a general constraint over the counterrotating tangential velocities needed to cast the surface energy-momentum tensor of the disk as the superposition of two counterrotating charged dust fluids. We also find explicit expressions for the energy densities, charge densities and velocities of the counterrotating fluids. We then show that this constraint can be satisfied if we take the two counterrotating streams as circulating along electro-geodesics. However, we show that, in general, it is not possible to take the two counterrotating fluids as circulating along electro-geodesics nor take the two counterrotating tangential velocities as equal and opposite. Four simple families of models of counterrotating charged disks based on Chazy-Curzon-like, Zipoy-Voorhees-like, Bonnor-Sackfield-like and Kerr-like electrovacuum solutions are considered where we obtain some disks with a CRM well behaved. The models are constructed using the well-known ``displace, cut and reflect method extended to solutions of vacuum Einstein-Maxwell equations.
The interpretation of some electrovacuum spacetimes in terms of counterrotating perfect fluid discs is presented. The interpretation is mades by means of an inverse problem approach used to obtain disc sources of known static solutions of the Einstei
An infinite family of new exact solutions of the Einstein vacuum equations for static and axially symmetric spacetimes is presented. All the metric functions of the solutions are explicitly computed and the obtained expressions are simply written in
The first fully integrated explicit exact solution of the Einstein field equations corresponding to the superposition of a counterrotating dust disk with a central black hole is presented. The obtained solution represents an infinite annular thin dis
In this paper is discussed a class of static spherically symmetric solutions of the general relativistic elasticity equations. The main point of discussion is the comparison of two matter models given in terms of their stored energy functionals, i.e.
An algorithm presented by K. Lake to obtain all static spherically symmetric perfect fluid solutions was recently extended by L. Herrera to the interesting case of locally anisotropic fluids (principal stresses unequal). In this work we develop an al