ترغب بنشر مسار تعليمي؟ اضغط هنا

NICMOS Spectrophotometry and Models for A-Stars

174   0   0.0 ( 0 )
 نشر من قبل Sharon Toolan
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. C. Bohlin




اسأل ChatGPT حول البحث

Absolute flux distributions for eight stars are well measured from 0.8-2.5mu m with NICMOS grism spectrophotometry at a resolution of R~100 and an accuracy of 1-2%. These SEDs are fit with Castelli & Kurucz model atmospheres; and the results are compared with the Cohen-Walker-Witteborn (CWW) template models for the same stars. In some cases, the T_{eff}, log g, and log z parameters of the best fitting model differ by up to 1000 K from the earlier CWW model. However, differences in the continua of the modeled IR flux distributions from 0.4-40mu m are always less than the quoted CWW uncertainty of 5% because of compensating changes in the measured extinction. At wavelengths longward of the 2.5mu m NICMOS limit, uncertainties still approach 5%, because A-star models are not yet perfect. All of these A stars lie in the JWST continuous viewing zone and will be important absolute flux standards for the 0.8-30mu m JWST wavelength range.



قيم البحث

اقرأ أيضاً

76 - R. C. Bohlin 2010
Absolute flux distributions for seven solar analog stars are measured from 0.3 to 2.5 mu m by HST spectrophotometry.In order to predict the longer wavelength mid-IR fluxes that are required for JWST calibration, the HST SEDs are fit with Castelli & K urucz model atmospheres; and the results are compared with fits from the MARCS model grid. The rms residuals in 10 broad band bins are all <0.5% for the best fits from both model grids. However, the fits differ systematically: The MARCS fits are 40-100 K hotter in T_{eff}, 0.25-0.80 higher in log g, 0.01-0.10 higher in log z, and 0.008-0.021 higher in the reddening E(B-V), probably because their specifications include different metal abundances. Despite these differences in the parameters of the fits, the predicted mid-IR fluxes differ by only ~1%; and the modeled flux distributions of these G stars have an estimated ensemble accuracy of 2% out to 30 mu m.
Spectrophotometric stability, which is crucial in the spectral characterization of transiting exoplanets, is affected by photometric variations arising from field-stop loss in space telescopes with pointing jitter or primary mirror deformation. This paper focuses on a new method for removing slit-loss or field-stop-loss photometric variation through the use of a pupil mask. Two types of pupil function are introduced: the first uses conventional (e.g., Gaussian or hyper-Gaussian) apodizing patterns; whereas the second, which we call a block-shaped mask, employs a new type of pupil mask designed for high photometric stability. A methodology for the optimization of a pupil mask for transit observations is also developed. The block-shaped mask can achieve a photometric stability of $10^{-5}$ for a nearly arbitrary field-stop radius when the pointing jitter is smaller than approximately $0.7 lambda/D $ and a photometric stability of $10^{-6}$ at a pointing jitter smaller than approximately $0.5 lambda/D $. The impact of optical aberrations and mask imperfections upon mask performance is also discussed.
We provide an overview of the most important calibration aspects of the NICMOS instrument on board of HST. We describe the performance of the instrument after the installation of the NICMOS Cooling System, and show that the behavior of the instrument has become very stable and predictable. We detail the improvements made to the NICMOS pipeline and outline plans for future developments. The derivation of the absolute photometric zero-point calibration is described in detail. Finally, we describe and quantify a newly discovered count-rate dependent non-linearity in the NICMOS cameras. This new non-linearity is distinctly different from the total count dependent non-linearity that is well known for near-infrared detectors. We show that the non-linearity has a power law behavior, with pixels with high system, or vice versa, pixels with low count rate detecting slightly less than expected. The effect has a wavelength dependence with observations at the shortest wavelengths being the most affected (~0.05-0.1 mag per dex flux change at ~1 micron, 0.03 mag per dex at 1.6 micron).
NICMOS 2 observations are crucial for constraining distances to most of the existing sample of z > 1 SNe Ia. Unlike the conventional calibration programs, these observations involve long exposure times and low count rates. Reciprocity failure is know n to exist in HgCdTe devices and a correction for this effect has already been implemented for high and medium count-rates. However observations at faint count-rates rely on extrapolations. Here instead, we provide a new zeropoint calibration directly applicable to faint sources. This is obtained via inter-calibration of NIC2 F110W/F160W with WFC3 in the low count-rate regime using z ~ 1 elliptical galaxies as tertiary calibrators. These objects have relatively simple near-IR SEDs, uniform colors, and their extended nature gives superior signal-to-noise at the same count rate than would stars. The use of extended objects also allows greater tolerances on PSF profiles. We find ST magnitude zeropoints (after the installation of the NICMOS cooling system, NCS) of 25.296 +- 0.022 for F110W and 25.803 +- 0.023 for F160W, both in agreement with the calibration extrapolated from count-rates 1,000 times larger (25.262 and 25.799). Before the installation of the NCS, we find 24.843 +- 0.025 for F110W and 25.498 +- 0.021 for F160W, also in agreement with the high-count-rate calibration (24.815 and 25.470). We also check the standard bandpasses of WFC3 and NICMOS 2 using a range of stars and galaxies at different colors and find mild tension for WFC3, limiting the accuracy of the zeropoints. To avoid human bias, our cross-calibration was blinded in that the fitted zeropoint differences were hidden until the analysis was finalized.
NICMOS cameras 1 and 2 each carry a set of three polarizing elements to provide high sensitivity observations of linearly polarized light. The polarizers are bandpass limited and provide diffraction-limited imaging in camera 1 at 0.8 - 1.3um, and in camera 2 at 1.9-2.1um. The NICMOS design specified the intra-camera primary axis angles of the polarizers to be differentially offset by 120 degree, and with identical polarizing efficiency and transmittance. While this ideal concept was not strictly achieved, accurate polarimetry in both cameras, over their full (11 and ~19.2 square) fields of view was enabled through ground and on-orbit calibration of the as-built and HST-integrated systems. The Cycle 7 & 7N calibration program enabled and demonstrated excellent imaging polarimetric performance with uncertainties in measured polarization fractions <=1%. After the installation of the NICMOS Cooling System (NCS), the polarimetric calibration was re-established in Cycle 11, resulting in systemic performance comparable to (or better than) Cycle 7 & 7N. The NCS era NICMOS performance inspired the development of an earlier conceived, but non-implemented, observing mode combining high contrast coronagraphic imaging and polarimetry in camera 2. We successfully executed a program to calibrate and commission the Coronagraphic Polarimetry mode in NICMOS in Cycle 13, and the mode was made available for GO use in Cycle 14. We discuss the data reduction and calibration of direct and coronagraphic NICMOS polarimetry. Importantly, NICMOS coronagraphic polarimetry provides unique access to polarized light near bright targets over a range of spatial scales intermediate between direct polarimetry and ground-based (coronagraphic) polarimetry using adaptive optics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا