ﻻ يوجد ملخص باللغة العربية
Absolute flux distributions for eight stars are well measured from 0.8-2.5mu m with NICMOS grism spectrophotometry at a resolution of R~100 and an accuracy of 1-2%. These SEDs are fit with Castelli & Kurucz model atmospheres; and the results are compared with the Cohen-Walker-Witteborn (CWW) template models for the same stars. In some cases, the T_{eff}, log g, and log z parameters of the best fitting model differ by up to 1000 K from the earlier CWW model. However, differences in the continua of the modeled IR flux distributions from 0.4-40mu m are always less than the quoted CWW uncertainty of 5% because of compensating changes in the measured extinction. At wavelengths longward of the 2.5mu m NICMOS limit, uncertainties still approach 5%, because A-star models are not yet perfect. All of these A stars lie in the JWST continuous viewing zone and will be important absolute flux standards for the 0.8-30mu m JWST wavelength range.
Absolute flux distributions for seven solar analog stars are measured from 0.3 to 2.5 mu m by HST spectrophotometry.In order to predict the longer wavelength mid-IR fluxes that are required for JWST calibration, the HST SEDs are fit with Castelli & K
Spectrophotometric stability, which is crucial in the spectral characterization of transiting exoplanets, is affected by photometric variations arising from field-stop loss in space telescopes with pointing jitter or primary mirror deformation. This
We provide an overview of the most important calibration aspects of the NICMOS instrument on board of HST. We describe the performance of the instrument after the installation of the NICMOS Cooling System, and show that the behavior of the instrument
NICMOS 2 observations are crucial for constraining distances to most of the existing sample of z > 1 SNe Ia. Unlike the conventional calibration programs, these observations involve long exposure times and low count rates. Reciprocity failure is know
NICMOS cameras 1 and 2 each carry a set of three polarizing elements to provide high sensitivity observations of linearly polarized light. The polarizers are bandpass limited and provide diffraction-limited imaging in camera 1 at 0.8 - 1.3um, and in