ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical Mass of the Substellar Benchmark Binary HD 130948BC

103   0   0.0 ( 0 )
 نشر من قبل Michael C. Liu
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) We present Keck, HST, and Gemini-North observations of the L4+L4 binary HD 130948BC which together span ~70% of the binarys orbital period. We determine a total dynamical mass of 0.109+/-0.002 Msun (114+/-2 Mjup). The flux ratio is near unity, so both components are unambiguously substellar for any plausible mass ratio. An independent constraint on the age of the system is available from the G2V primary HD 130948A. The available indicators suggest an age comparable to the Hyades, with the most precise age being 0.79 Gyr based on gyrochronology. Therefore, HD 130948BC is now a unique benchmark among field L and T dwarfs, with a well-determined mass, luminosity, and age. We find that substellar theoretical models disagree with our observations. Both components of HD 130948BC appear to be overluminous by a factor of ~2-3x compared to evolutionary models. The age of the system would have to be notably younger than the gyro age to ameliorate the luminosity disagreement. However, regardless of the adopted age, evolutionary and atmospheric models give inconsistent results, indicating systematic errors in at least one class of models, possibly both. The masses of HD 130948BC happen to be very near the theoretical mass limit for lithium burning, and thus measuring the differential lithium depletion between B and C will provide a uniquely discriminating test of theoretical models. The potential underestimate of luminosities by evolutionary models would have wide-ranging implications; therefore, a more refined age estimate for HD 130948A is critically needed.



قيم البحث

اقرأ أيضاً

We present 2.9-4.1 micron integral field spectroscopy of the L4+L4 brown dwarf binary HD 130948BC, obtained with the Arizona Lenslets for Exoplanet Spectroscopy (ALES) mode of the Large Binocular Telescope Interferometer (LBTI). The HD 130948 system is a hierarchical triple system, in which the G2V primary is joined by two co-orbiting brown dwarfs. By combining the age of the system with the dynamical masses and luminosities of the substellar companions, we can test evolutionary models of cool brown dwarfs and extra-solar giant planets. Previous near-infrared studies suggest a disagreement between HD 130948BC luminosities and those derived from evolutionary models. We obtained spatially-resolved, low-resolution (R~20) L-band spectra of HD 130948B and C to extend the wavelength coverage into the thermal infrared. Jointly using JHK photometry and ALES L-band spectra for HD 130948BC, we derive atmospheric parameters that are consistent with parameters derived from evolutionary models. We leverage the consistency of these atmospheric quantities to favor a younger age (0.50 pm 0.07 Gyr) of the system compared to the older age (0.79 pm 0.22 Gyr) determined with gyrochronology in order to address the luminosity discrepancy.
157 - L. Labadie , R. Rebolo , I. Villo 2010
High contrast imaging at optical wavelengths is limited by the modest correction of conventional near-IR optimized AO systems.We take advantage of new fast and low-readout-noise detectors to explore the potential of fast imaging coupled to post-proce ssing techniques to detect faint companions to stars at small separations. We have focused on I-band direct imaging of the previously detected brown dwarf binary HD130948BC,attempting to spatially resolve the L2+L2 benchmark system. We used the Lucky-Imaging instrument FastCam at the 2.5-m Nordic Telescope to obtain quasi diffraction-limited images of HD130948 with ~0.1 resolution.In order to improve the detectability of the faint binary in the vicinity of a bright (I=5.19 pm 0.03) solar-type star,we implemented a post-processing technique based on wavelet transform filtering of the image which allows us to strongly enhance the presence of point-like sources in regions where the primary halo dominates. We detect for the first time the BD binary HD130948BC in the optical band I with a SNR~9 at 2.561pm 0.007 (46.5 AU) from HD130948A and confirm in two independent dataset that the object is real,as opposed to time-varying residual speckles.We do not resolve the binary, which can be explained by astrometric results posterior to our observations that predict a separation below the NOT resolution.We reach at this distance a contrast of dI = 11.30 pm 0.11, and estimate a combined magnitude for this binary to I = 16.49 pm 0.11 and a I-J colour 3.29 pm 0.13. At 1, we reach a detectability 10.5 mag fainter than the primary after image post-processing. We obtain on-sky validation of a technique based on speckle imaging and wavelet-transform processing,which improves the high contrast capabilities of speckle imaging.The I-J colour measured for the BD companion is slightly bluer, but still consistent with what typically found for L2 dwarfs(~3.4-3.6).
We have been using Keck laser guide star adaptive optics to monitor the orbits of ultracool binaries, providing dynamical masses at lower luminosities and temperatures than previously available and enabling strong tests of theoretical models. We have identified three specific problems with theory: (1) We find that model color-magnitude diagrams cannot be reliably used to infer masses as they do not accurately reproduce the colors of ultracool dwarfs of known mass. (2) Effective temperatures inferred from evolutionary model radii are typically inconsistent with temperatures derived from fitting atmospheric models to observed spectra by 100-300 K. (3) For the only known pair of field brown dwarfs with a precise mass (3%) and age determination (~25%), the measured luminosities are ~2-3x higher than predicted by model cooling rates (i.e., masses inferred from Lbol and age are 20-30% larger than measured). To make progress in understanding the observed discrepancies, more mass measurements spanning a wide range of luminosity, temperature, and age are needed, along with more accurate age determinations (e.g., via asteroseismology) for primary stars with brown dwarf binary companions. Also, resolved optical and infrared spectroscopy are needed to measure lithium depletion and to characterize the atmospheres of binary components in order to better assess model deficiencies.
We report the detections of two substellar companions orbiting around evolved intermediate-mass stars from precise Doppler measurements at Subaru Telescope and Okayama Astrophysical Observatory. HD 145457 is a K0 giant with a mass of 1.9 M_sun and ha s a planet of minimum mass m_2sini=2.9 M_J orbiting with period of P=176 d and eccentricity of e=0.11. HD 180314 is also a K0 giant with 2.6 M_sun and hosts a substellar companion of m_2sin i=22 M_J, which falls in brown-dwarf mass regime, in an orbit with P=396 d and e=0.26. HD 145457 b is one of the innermost planets and HD 180314 b is the seventh candidate of brown-dwarf-mass companion found around intermediate-mass evolved stars.
104 - Trent J. Dupuy 2014
We present new evidence for a problem with cooling rates predicted by substellar evolutionary models that implies model-derived masses in the literature for brown dwarfs and directly imaged planets may be too high. Based on our dynamical mass for Gl 417BC (L4.5+L6) and a gyrochronology system age from its young, solar-type host star, commonly used models predict luminosities 0.2$-$0.4 dex lower than we observe. This corroborates a similar luminosity$-$age discrepancy identified in our previous work on the L4+L4 binary HD 130948BC, which coincidentally has nearly identical component masses ($approx$50$-$55 $M_{rm Jup}$) and age ($approx$800 Myr) as Gl 417BC. Such a luminosity offset would cause systematic errors of 15%$-$25% in model-derived masses at this age. After comparing different models, including cloudless models that should not be appropriate for mid-L dwarfs like Gl 417BC and HD 130948BC but actually match their luminosities better, we speculate the observed over-luminosity could be caused by opacity holes (i.e., patchy clouds) in these objects. Moreover, from hybrid substellar evolutionary models that account for cloud disappearance we infer the corresponding phase of over-luminosity may extend from a few hundred Myr up to a few Gyr and cause masses to to be over-estimated by up to 25%, even well after clouds disappear from view entirely. Thus, the range of of ages and spectral types affected by this potential systematic shift in luminosity evolution would encompass most known directly imaged gas-giants and field brown dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا