ﻻ يوجد ملخص باللغة العربية
We investigated the effects of temperature and magnetic field on the electronic structure of hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using optical spectroscopy. As the magnetic ordering of the system was disturbed, a systematic change in the electronic structure was commonly identified in this series. The optical absorption peak near 1.7 eV showed an unexpectedly large shift of more than 150 meV from 300 K to 15 K, accompanied by an anomaly of the shift at the Neel temperature. The magnetic field dependent measurement clearly revealed a sizable shift of the corresponding peak when a high magnetic field was applied. Our findings indicated strong coupling between the magnetic ordering and the electronic structure in the multiferroic hexagonal RMnO3 compounds.
We investigated the electronic structure of multiferroic hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using both optical spectroscopy and first-principles calculations. Using artificially stabilized hexagonal RMnO3, we extended the optical spe
We have studied the crystal and magnetic structures of the magnetoelectric materials RMn2O5 (R = Tb, Ho, Dy) using neutron diffraction as a function of temperature. All three materials display incommensurate antiferromagnetic ordering below 40 K, bec
We have used a shell model to study the phonon dynamics of multiferroic manganites RMnO3 (R= Tb, Dy, Ho). The calculated phonon dynamical properties, crystal structure, Raman frequencies and specific heat are found to be in good agreement with the av
The magnetic phase diagrams of RMnO3 (R = Er, Yb, Tm, Ho) are investigated up to 14 Tesla via magnetic and dielectric measurements. The stability range of the AFM order below the Neel temperature of the studied RMnO3 extends to far higher magnetic fi
X-ray resonant magnetic scattering studies of rare earth magnetic ordering were performed on perovskite manganites RMnO3 (R = Dy, Gd) in an applied magnetic field. The data reveal that the field-induced three-fold polarization enhancement for H || a