ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Correlations in the Geometrically Frustrated Pyrochlore Tb2Mo2O7

166   0   0.0 ( 0 )
 نشر من قبل Deepak Singh
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report neutron scattering studies of the spin correlations of the geometrically frustrated pyrochlore Tb2Mo2O7 using single crystal samples. This material undergoes a spin-freezing transition below Tg~24 K, similar to Y2Mo2O7, and has little apparent chemical disorder. Diffuse elastic peaks are observed at low temperatures, indicating short-range ordering of the Tb moments in an arrangement where the Tb moments are slightly rotated from the preferred directions of the spin ice structure. In addition, a Q-independent signal is observed which likely originates from frozen, but completely uncorrelated, Tb moments. Inelastic measurements show the absence of sharp peaks due to crystal field excitations. These data show how the physics of the Tb sublattice responds to the glassy behavior of the Mo sublattice with the associated effects of lattice disorder.

قيم البحث

اقرأ أيضاً

We report on infrared, Raman, magnetic susceptibility, and specific heat measurements on CdCr2O4 and ZnCr2O4 single crystals. We estimate the nearest-neighbor and next-nearest neighbor exchange constants from the magnetic susceptibility and extract t he spin-spin correlation functions obtained from the magnetic susceptibility and the magnetic contribution to the specific heat. By comparing with the frequency shift of the infrared optical phonons above TN , we derive estimates for the spin-phonon coupling constants in these systems. The observation of phonon modes which are both Raman and infrared active suggest the loss of inversion symmetry below the Neel temperature in CdCr2O4 in agreement with theoretical predictions by Chern and coworkers [Phys. Rev. B 74, 060405 (2006)]. In ZnCr2O4 several new modes appear below TN, but no phonon modes could be detected which are both Raman and infrared active indicating the conservation of inversion symmetry in the low temperature phase.
We report the bulk magnetic properties of a yet unexplored vanadium-based multivalued spinel system, Zn3V3O8. A Curie-Weiss fit of our dc magnetic susceptibility data in the temperature region from 140 to 300 K yields a Curie constant C = 0.75cm3K/mo le V, theta CW = -370 K. We have observed a splitting between the zero field cooled ZFC and field cooled FC susceptibility curves below a temperature Tirr of about 6.3 K. The value of the frustration parameter nearly equals to 100 suggests that the system is strongly frustrated. From the ac susceptibility measurements we find a logarithmic variation of freezing temperature (Tf ) with frequency attesting to the formation of a spin glass below Tf . However, the value of the characteristic frequency obtained from the Vogel-Fulcher fit suggests that the ground state is closer to a cluster glass rather than a conventional spin glass. We explored further consequences of the spin glass behavior and observed aging phenomena and memory effect (both in ZFC and FC). We found that a positive temperature cycle erases the memory, as predicted by the hierarchical model. From the heat capacity CP data, a hump-like anomaly was observed in CP /T at about 3.75 K. Below this temperature the magnetic heat capacity shows a nearly linear dependence with T which is consistent with the formation of a spin glass state below Tf in Zn3V3O8.
LiZn$_2$Mo$_3$O$_8$ has been proposed to contain $S~=~1/2$ Mo$_3$O$_{13}$ magnetic clusters arranged on a triangular lattice with antiferromagnetic nearest-neighbor interactions. Here, microwave and terahertz electron spin resonance (ESR), $^7$Li nuc lear magnetic resonance (NMR), and muon spin rotation ($mu textrm{SR}$) spectroscopies are used to characterize the local magnetic properties of LiZn$_2$Mo$_3$O$_8$. These results show the magnetism in LiZn$_2$Mo$_3$O$_8$ arises from a single isotropic $S~=~1/2$ electron per cluster and that there is no static long-range magnetic ordering down to $T~=~0.07,textrm{K}$. Further, there is evidence of gapless spin excitations with spin fluctuations slowing down as the temperature is lowered. These data indicate strong spin correlations which, together with previous data, suggest a low-temperature resonating valence-bond state in LiZn$_2$Mo$_3$O$_8$.
We investigate spin correlations in the dipolar Heisenberg antiferromagnet Gd2Sn2O7 using polarised neutron-scattering measurements in the correlated paramagnetic regime. Using Monte Carlo methods, we show that our data are sensitive to weak further- neighbour exchange interactions of magnitude ~0.5% of the nearest-neighbour interaction, and are compatible with either antiferromagnetic next-nearest neighbour interactions, or ferromagnetic third-neighbour interactions that connect spins across hexagonal loops. Calculations of the magnetic scattering intensity reveal rods of diffuse scattering along [111] reciprocal-space directions, which we explain in terms of strong antiferromagnetic correlations parallel to the set of <110> directions that connect a given spin with its nearest neighbours. Finally, we demonstrate that the spin correlations in Gd2Sn2O7 are highly anisotropic, and correlations parallel to third-neighbour separations are particularly sensitive to critical fluctuations associated with incipient long-range order.
143 - M. Pregelj , A. Zorko , O. Zaharko 2013
The layered FeTe2O5Cl compound was studied by specific-heat, muon spin relaxation, nuclear magnetic resonance, dielectric, as well as neutron and synchrotron x-ray diffraction measurements, and the results were compared to isostructural FeTe2O5Br. We find that the low-temperature ordered state, similarly as in FeTe2O5Br, is multiferroic - the elliptical amplitude-modulated magnetic cycloid and the electric polarization simultaneously develop below 11 K. However, compared to FeTe2O5Br, the magnetic elliptical envelop rotates by 75(4) deg and the orientation of the electric polarization is much more sensitive to the applied electric field. We propose that the observed differences between the two isostructural compounds arise from geometric frustration, which enhances the effects of otherwise subtle Fe3+ (S = 5/2) magnetic anisotropies. Finally, x-ray diffraction results imply that, on the microscopic scale, the magnetoelectric coupling is driven by shifts of the O1 atoms, as a response to the polarization of the Te4+ lone-pair electrons involved in the Fe-O-Te-O-Fe exchange bridges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا