ﻻ يوجد ملخص باللغة العربية
We present the first multi-color view of the scattered light disk of the Herbig Ae star HD 163296, based on coronagraphic observations from the Hubble Space Telescope Advanced Camera for Surveys (ACS). Radial profile fits of the surface brightness along the disks semi-major axis indicates that the disk is not continuously flared, and extends to 540 AU. The disks color (V-I)=1.1 at a radial distance of 3.5 arcseconds is redder than the observed stellar color (V-I)=0.15. This red disk color might be indicative of either an evolution in the grain size distribution (i.e. grain growth) and/or composition, both of which would be consistent with the observed non-flared geometry of the outer disk. We also identify a single ansa morphological structure in our F435W ACS data, which is absent from earlier epoch F606W and F814W ACS data, but corresponds to one of the two ansa observed in archival HST STIS coronagraphic data. Following transformation to similar band-passes, we find that the scattered light disk of HD 163296 is 1 mag arcsec$^{-2}$ fainter at 3.5 arcseconds in the STIS data than in the ACS data. Moreover, variations are seen in (i) the visibility of the ansa(e) structures, in (ii) the relative surface brightness of the ansa(e) structures, and in (iii) the (known) intrinsic polarization of the system. These results indicate that the scattered light from the HD 163296 disk is variable. We speculate that the inner disk wall, which Sitko et al. suggests has a variable scale height as diagnosed by near-IR SED variability, induces variable self-shadowing of the outer disk. We further speculate that the observed surface brightness variability of the ansa(e) structures may indicate that the inner disk wall is azimuthally asymmetric.
We present H-band polarized scattered light imagery and JHK high-contrast spectroscopy of the protoplanetary disk around HD 163296 observed with the HiCIAO and SCExAO/CHARIS instruments at Subaru Observatory. The polarimetric imagery resolve a broken
High resolution ALMA observations revealed a variety of rich substructures in numerous protoplanetary disks. These structures consist of rings, gaps and asymmetric features. It is debated whether planets can be accounted for these substructures in th
Shadows in scattered light images of protoplanetary disks are a common feature and support the presence of warps or misalignments between disk regions. These warps are possibly due to an inclined (sub-)stellar companion embedded in the disk. We study
We report Submillimeter Array (SMA) observations of CO (J=2--1, 3--2 and 6--5) and its isotopologues (13CO J=2--1, C18O J=2--1 and C17O J=3--2) in the disk around the Herbig Ae star HD 163296 at ~2 (250 AU) resolution, and interpret these data in the
The condensation fronts (snow lines) of H2O, CO and other abundant volatiles in the midplane of a protoplanetary disk affect several aspects of planet formation. Locating the CO snow line, where the CO gas column density is expected to drop substanti