ترغب بنشر مسار تعليمي؟ اضغط هنا

Physics of reverse annealing in high-resistivity Chandra ACIS CCDs

462   0   0.0 ( 0 )
 نشر من قبل Catherine E. Grant
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

After launch, the Advanced CCD Imaging Spectrometer (ACIS), a focal plane instrument on the Chandra X-ray Observatory, suffered radiation damage from exposure to soft protons during passages through the Earths radiation belts. An effect of the damage was to increase the charge transfer inefficiency (CTI) of the front illuminated CCDs. As part of the initial damage assessment, the focal plane was warmed from the operating temperature of -100C to +30C which unexpectedly further increased the CTI. We report results of ACIS CCD irradiation experiments in the lab aimed at better understanding this reverse annealing process. Six CCDs were irradiated cold by protons ranging in energy from 100 keV to 400 keV, and then subjected to simulated bakeouts in one of three annealing cycles. We present results of these lab experiments, compare them to our previous experiences on the ground and in flight, and derive limits on the annealing time constants.



قيم البحث

اقرأ أيضاً

In this work, we will present a physical model and measurements of the transport of small charge packets in the bulk of thick high resistivity CCD before being collected by the pixel potential wells. A new technique to measure the lateral spread of t he charge as a function of the ionization depth in the bulk is presented. Results from measurements on CCD currently in use for several scientific instruments are shown and validated with a new mathematical algorithm to extend the current modeling based only on the diffusion of the charge in silicon.
The development of the Skipper Charge Coupled Devices (Skipper-CCDs) has been a major technological breakthrough for sensing very weak ionizing particles. The sensor allows to reach the ultimate sensitivity of silicon material as a charge signal sens or by unambiguous determination of the charge signal collected by each cell or pixel, even for single electron-hole pair ionization. Extensive use of the technology was limited by the lack of specific equipment to operate the sensor at the ultimate performance. In this work a simple, single-board Skipper-CCD controller is presented, aimed for the operation of the detector in high sensitivity scientific applications. The article describes the main components and functionality of the Low Threshold Acquisition (LTA) together with experimental results when connected to a Skipper-CCD sensor. Measurements show unprecedented deep sub-electron noise of 0.039 e$^-_{rms}$/pix for 5000 pixel measurements.
We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution o f CCDs, were developed to identify $alpha$ and $beta$ particles. Uranium and thorium contamination in the CCD bulk was measured through $alpha$ spectroscopy, with an upper limit on the $^{238}$U ($^{232}$Th) decay rate of 5 (15) kg$^{-1}$ d$^{-1}$ at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from $^{32}$Si-$^{32}$P or $^{210}$Pb-$^{210}$Bi sequences of $beta$ decays. The decay rate of $^{32}$Si was found to be $80^{+110}_{-65}$ kg$^{-1}$ d$^{-1}$ (95% CI). An upper limit of $sim$35 kg$^{-1}$ d$^{-1}$ (95% CL) on the $^{210}$Pb decay rate was obtained independently by $alpha$ spectroscopy and the $beta$ decay sequence search. These levels of radioactive contamination are sufficiently low for the successful operation of CCDs in the forthcoming 100 g DAMIC detector.
The Advanced CCD Imaging Spectrometer (ACIS) on the Chandra X-ray Observatory is suffering a gradual loss of low energy sensitivity due to a buildup of a contaminant. High resolution spectra of bright astrophysical sources using the Chandra Low Energ y Transmission Grating Spectrometer (LETGS) have been analyzed in order to determine the nature of the contaminant by measuring the absorption edges. The dominant element in the contaminant is carbon. Edges due to oxygen and fluorine are also detectable. Excluding H, we find that C, O, and F comprise >80%, 7%, and 7% of the contaminant by number, respectively. Nitrogen is less than 3% of the contaminant. We will assess various candidates for the contaminating material and investigate the growth of the layer with time. For example, the detailed structure of the C-K absorption edge provides information about the bonding structure of the compound, eliminating aromatic hydrocarbons as the contaminating material.
We present the status of on-going detector development efforts for our joint NASA/CNES balloon-borne UV multi-object spectrograph, the Faint Intergalactic Redshifted Emission Balloon (FIREBall-2; FB-2). FB-2 demonstrates a new UV detector technology, the delta-doped Electron Multiplying CCD (EMCCD), in a low risk suborbital environment, to prove the performance of EMCCDs for future space missions and Technology Readiness Level (TRL) advancement. EMCCDs can be used in photon counting (PC) mode to achieve extremely low readout noise ($<$1 electron). Our testing has focused on reducing clock-induced-charge (CIC) through wave shaping and well depth optimization with a uvu V2 CCCP Controller, measuring CIC at 0.001 e$^{-}$/pixel/frame. This optimization also includes methods for reducing dark current, via cooling, and substrate voltage levels. We discuss the challenges of removing cosmic rays, which are also amplified by these detectors, as well as a data reduction pipeline designed for our noise measurement objectives. FB-2 flew in 2018, providing the first time an EMCCD was used for UV observations in the stratosphere. FB-2 is currently being built up to fly again in 2020, and improvements are being made to the EMCCD to continue optimizing its performance for better noise control.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا