ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics

50   0   0.0 ( 0 )
 نشر من قبل Eric E. Mamajek
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eric E. Mamajek




اسأل ChatGPT حول البحث

While the strong anti-correlation between chromospheric activity and age has led to the common use of the Ca II H & K emission index (R_HK = L_HK/L_bol) as an empirical age estimator for solar type dwarfs, existing activity-age relations produce implausible ages at both high and low activity levels. We have compiled R_HK data from the literature for young stellar clusters, richly populating for the first time the young end of the activity-age relation. Combining the cluster activity data with modern cluster age estimates, and analyzing the color-dependence of the chromospheric activity age index, we derive an improved activity-age calibration for F7-K2 dwarfs (0.5 < B-V < 0.9 mag). We also present a more fundamentally motivated activity-age calibration that relies on conversion of R_HK values through the Rossby number to rotation periods, and then makes use of improved gyrochronology relations. We demonstrate that our new activity-age calibration has typical age precision of ~0.2 dex for normal solar-type dwarfs aged between the Hyades and the Sun (~0.6-4.5 Gyr). Inferring ages through activity-rotation-age relations accounts for some color-dependent effects, and systematically improves the age estimates (albeit only slightly). We demonstrate that coronal activity as measured through the fractional X-ray luminosity (R_X = L_X/L_bol) has nearly the same age- and rotation-inferring capability as chromospheric activity measured through R_HK. As a first application of our calibrations, we provide new activity-derived age estimates for the nearest 100 solar-type field dwarfs (d < 15 pc).


قيم البحث

اقرأ أيضاً

73 - Rocio Kiman 2021
In this work, we calibrate the relationship between Halpha emission and M dwarf ages. We compile a sample of 892 M dwarfs with Halpha equivalent width (HaEW) measurements from the literature that are either co-moving with a white dwarf of known age ( 21 stars) or in a known young association (871 stars). In this sample we identify 7 M dwarfs that are new candidate members of known associations. By dividing the stars into active and inactive categories according to their HaEW and spectral type (SpT), we find that the fraction of active dwarfs decreases with increasing age, and the form of the decline depends on SpT. Using the compiled sample of age-calibrators we find that HaEW and fractional Halpha luminosity (LHaLbol) decrease with increasing age. HaEW for SpT<M7 decreases gradually up until ~1Gyr. For older ages, we found only two early M dwarfs which are both inactive and seem to continue the gradual decrease. We also found 14 mid-type out of which 11 are inactive and present a significant decrease of HaEW, suggesting that the magnetic activity decreases rapidly after ~1Gyr. We fit LHaLbol versus age with a broken power-law and find an index of -0.11+0.02-0.01 for ages <~776Myr. The index becomes much steeper at older ages however a lack of field age-calibrators leaves this part of the relation far less constrained. Finally, from repeated independent measurements for the same stars we find that 94% of these has a level of HaEW variability <=5A at young ages (<1Gyr).
211 - M. McLean , 2011
[Abridged] We present a new radio survey of about 100 late-M and L dwarfs undertaken with the VLA. The sample was chosen to explore the role of rotation in the radio activity of ultracool dwarfs. Combining the new sample with results from our previou s studies and from the literature, we compile the largest sample to date of ultracool dwarfs with radio observations and measured rotation velocities (167 objects). In the spectral type range M0-M6 we find a radio activity-rotation relation, with saturation at log(L_rad/L_bol) 10^(-7.5) above vsini~5 km/s, similar to the relation in H-alpha and X-rays. However, at spectral types >M7 the ratio of radio to bolometric luminosity increases regardless of rotation velocity, and the scatter in radio luminosity increases. In particular, while the most rapid rotators (vsini>20 km/s) exhibit super-saturation in X-rays and H-alpha, this effect is not seen in the radio. We also find that ultracool dwarfs with vsini>20 km/s have a higher radio detection fraction by about a factor of 3 compared to objects with vsini<10 km/s. When measured in terms of the Rossby number (Ro), the radio activity-rotation relation follows a single trend and with no apparent saturation from G to L dwarfs and down to Ro~10^-3; in X-rays and H-alpha there is clear saturation at Ro<0.1, with super-saturation beyond M7. A similar trend is observed for the radio surface flux (L_rad/R^2) as a function of Ro. The continued role of rotation in the overall level of radio activity and in the fraction of active sources, and the single trend of L_rad/L_bol and L_rad/R^2 as a function of Ro from G to L dwarfs indicates that rotation effects are important in regulating the topology or strength of magnetic fields in at least some fully-convective dwarfs. The fact that not all rapid rotators are detected in the radio provides additional support to the idea of dual dynamo states.
Over the past 40 years, observational surveys have established the existence of a tight relationship between a stars age, rotation period, and magnetic activity. This age-rotation-activity relation documents the interplay between a stars magnetic dyn amo and angular momentum evolution, and provides a valuable age estimator for isolated field stars. While the age-rotation-activity relation has been studied extensively in clusters younger than 500 Myr, empirically measured rotation periods are scarce for older ages. Using the Palomar Transient Factory (PTF), we have begun a survey of stellar rotation to map out the late-stage evolution of the age-rotation-activity relation: the Columbia/Cornell/Caltech PTF (CCCP) survey of open clusters. The first CCCP target is the nearby ~600 Myr Hyades-analog Praesepe, where PTF has produced light curves spanning more than 3 months and containing >150 measurements for ~650 cluster members. Analyzing these light curves, we have measured rotation periods for 40 K & M cluster members, filling the gap between the periods previously reported for solar-type Hyads (Radick et al. 1987, Prosser et al. 1995) and for a handful of low-mass Praesepe members (Scholz et al. 2007). Our measurements indicate that Praesepes period-color relation undergoes at transition at a characteristic spectral type of ~M1 --- from a well-defined singular relation at higher mass, to a more scattered distribution of both fast and slow-rotators at lower masses. The location of this transition is broadly consistent with expectations based on observations of younger clusters and the assumption that stellar-spin down is the dominant mechanism influencing angular momentum evolution at ~600 Myr. In addition to presenting the results of our photometric monitoring of Praesepe, we summarize the status and future of the CCCP survey.
Aims: We present a compilation of spectroscopic data from a survey of 144 chromospherically active young stars in the solar neighborhood which may be used to investigate different aspects of the formation and evolution of the solar neighborhood in te rms of kinematics and stellar formation history. The data have already been used by us in several studies. With this paper, we make all these data accessible to the scientific community for future studies on different topics. Methods: We performed spectroscopic observations with echelle spectrographs to cover the entirety of the optical spectral range simultaneously. Standard data reduction was performed with the IRAF ECHELLE package. We applied the spectral subtraction technique to reveal chromospheric emission in the stars of the sample. The equivalent width of chromospheric emission lines was measured in the subtracted spectra and then converted to fluxes using equivalent width-flux relationships. Radial and rotational velocities were determined by the cross-correlation technique. Kinematics, equivalent widths of the lithium line 6707.8 angstroms and spectral types were also determined. Results: A catalog of spectroscopic data is compiled: radial and rotational velocities, space motion, equivalent widths of optical chromospheric activity indicators from Ca II H & K to the calcium infrared triplet and the lithium line in 6708 angstroms. Fluxes in the chromospheric emission lines and RHK are also determined for each observation of star in the sample. We used these data to investigate the emission levels of our stars. The study of the Halpha emission line revealed the presence of two different populations of chromospheric emitters in the sample, clearly separated in the log F(Halpha)/Fbol - (V-J) diagram.
Stars with convective envelopes display magnetic activity, which decreases over time due to the magnetic braking of the star. This age-dependence of magnetic activity is well-studied for younger stars, but the nature of this dependence for older star s is not well understood. This is mainly because absolute stellar ages for older stars are hard to measure. However, relatively accurate stellar ages have recently come into reach through asteroseismology. In this work we present X-ray luminosities, which are a measure for magnetic activity displayed by the stellar coronae, for 24 stars with well-determined ages older than a gigayear. We find 14 stars with detectable X-ray luminosities and use these to calibrate the age-activity relationship. We find a relationship between stellar X-ray luminosity, normalized by stellar surface area, and age that is steeper than the relationships found for younger stars, with an exponent of $-2.80 pm 0.72$. Previous studies have found values for the exponent of the age-activity relationship ranging between -1.09 to -1.40, dependent on spectral type, for younger stars. Given that there are recent reports of a flattening relationship between age and rotational period for old cool stars, one possible explanation is that we witness a strong steepening of the relationship between activity and rotation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا