ﻻ يوجد ملخص باللغة العربية
We use first-principles methods to investigate the adsorption of Cu, Pb, Ag, and Mg onto a H-terminated Si surface. We show that Cu and Pb can adsorb strongly while Ag and Mg are fairly inert. In addition, two types of adsorption states are seen to exist for Pb. We also study the clustering energetics of Cu and Pb on the surface and find that while Cu clusters eagerly, Pb may prefer to form only small clusters of a few atoms. This kind of behavior of impurities is incorporated in kinetic Monte Carlo simulations of wet etching of Si. The simulation results agree with experiments supporting the idea that micromasking by Cu clusters and Pb atoms is the mechanism through which these impurities affect the etching process.
The morphology evolution of Si (100) surfaces under 1200 eV Ar+ ion bombardment at normal incidence with and without metal incorporation is presented. The formation of nanodot patterns is observed only when the stationary Fe concentration in the surf
The van der Waals epitaxy of single crystalline Bi2Se3 film was achieved on hydrogen passivated Si(111) (H:Si) substrate by physical vapor deposition. Valence band structures of Bi2Se3/H:Si heterojunction were investigated by X-ray Photoemission Spec
We study strain relaxation and surface damage of GaN nanopillar arrays fabricated using inductively coupled plasma (ICP) etching and post etch wet chemical treatment. We controlled the shape and surface damage of such nanopillar structures through se
A pi-conjugated {C}3h-oligomer involving three dithienylethylene branches bridged at the meta positions of a central benzenic core has been synthesized and deposited either on the Si(100) surface or on the HOPG surface. On the silicon surface, scanni
Adsorption geometry and stability of organic molecules on surfaces are key parameters that determine the observable properties and functions of hybrid inorganic/organic systems (HIOSs). Despite many recent advances in precise experimental characteriz