ﻻ يوجد ملخص باللغة العربية
Context. We analyse the line and continuum spectra of the symbiotic system CH Cygni. Aims. To show that the colliding-wind model is valid to explain this symbiotic star at different phases. Methods. Peculiar observed features such as flickering, radio variation, X-ray emission, as well as the distribution of the nebulae and shells throughout the system are investigated by modelling the spectra at different epochs. The models account consistently for shock and photoionization and are constrained by absolute fluxes. Results. We find that the reverse shock between the stars leads to the broad lines observed during the active phases, as well as to radio and hard X-ray emission, while the expanding shock is invoked to explain the data during the transition phases.
The photospheric abundances for the cool component of the symbiotic star CH Cyg were calculated for the first time using high-resolution near-infrared spectra and the method of of standard LTE analysis and atmospheric models. The iron abundance for C
Here we present quasi-simultaneous observations of the flickering of the symbiotic binary star CH Cyg in U, B and V bands. We calculate the flickering source parameters and discuss the possible reason for the flickering cessation in the period 2010-2013.
CH Cygni is a symbiotic star consisting of an M giant and an accreting white dwarf, which is known to be a highly variable X-ray source with a complex, two-component, spectra. Here we report on two Suzaku observations of CH Cyg, taken in 2006 January
HST and ground-based [OII} and [NII] images obtained from 1996 to 1999 reveal the existence of a ionised optical nebula around the symbiotic binary CH Cyg extending out to 5000 A.U. from the central stars. The observed velocity range of the nebula, d
High-dispersion spectroscopic observations are used to refine orbital elements for the symbiotic binary CH Cyg. The current radial velocities, added to a previously published 13 year time series of infrared velocities for the M giant in the CH Cyg sy