ﻻ يوجد ملخص باللغة العربية
Assume that we observe a large number of curves, all of them with identical, although unknown, shape, but with a different random shift. The objective is to estimate the individual time shifts and their distribution. Such an objective appears in several biological applications like neuroscience or ECG signal processing, in which the estimation of the distribution of the elapsed time between repetitive pulses with a possibly low signal-noise ratio, and without a knowledge of the pulse shape is of interest. We suggest an M-estimator leading to a three-stage algorithm: we split our data set in blocks, on which the estimation of the shifts is done by minimizing a cost criterion based on a functional of the periodogram; the estimated shifts are then plugged into a standard density estimator. We show that under mild regularity assumptions the density estimate converges weakly to the true shift distribution. The theory is applied both to simulations and to alignment of real ECG signals. The estimator of the shift distribution performs well, even in the case of low signal-to-noise ratio, and is shown to outperform the standard methods for curve alignment.
Air pollution constitutes the highest environmental risk factor in relation to heath. In order to provide the evidence required for health impact analyses, to inform policy and to develop potential mitigation strategies comprehensive information is r
Currently, novel coronavirus disease 2019 (COVID-19) is a big threat to global health. The rapid spread of the virus has created pandemic, and countries all over the world are struggling with a surge in COVID-19 infected cases. There are no drugs or
Random forests is a common non-parametric regression technique which performs well for mixed-type unordered data and irrelevant features, while being robust to monotonic variable transformations. Standard random forests, however, do not efficiently h
One of the classic concerns in statistics is determining if two samples come from thesame population, i.e. homogeneity testing. In this paper, we propose a homogeneitytest in the context of Functional Data Analysis, adopting an idea from multivariate
Selecting the optimal Markowitz porfolio depends on estimating the covariance matrix of the returns of $N$ assets from $T$ periods of historical data. Problematically, $N$ is typically of the same order as $T$, which makes the sample covariance matri